Москва, ул. Ст. Басманная, д. 21/4, стр.5
Тел: +7(495)772-95-90, доб.15250,15169
e-mail: facultyofphysics@hse.ru
Факультет физики НИУ ВШЭ был создан в октябре 2016 года. Его главные особенности:
50 бюджетных мест
30 платных мест
1 платное место для иностранцев
20 бюджетных мест
20 платных мест
1 платное место для иностранцев
Kamashev A. A., Garif’yanov N. N., Validov A. A. et al.
Physical Review B: Condensed Matter and Materials Physics. 2024. Vol. 109. No. 14.
S.S. Apostoloff, Andriyakhina E., I.S. Burmistrov.
Physical Review B: Condensed Matter and Materials Physics. 2024. Vol. 109. No. 10.
Kolokolov I., Lebedev V., Parfenyev V.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 2024. Vol. 109. No. 3.
V. Temkin, A. S. Ioselevich.
Annals of Physics. 2024. Vol. 462.
Zakharov, E.I., Barinov V. V., Burenin, R.A. et al.
Physical Review D - Particles, Fields, Gravitation and Cosmology. 2024. Vol. 109. No. 2.
S. I. Popel, Golub' A. P., L. M. Zelenyi.
Physics of Plasmas. 2023. Vol. 30. No. 4.
A. A. Arkhipova, Kartashov Y. V., Ivanov S. K. et al.
Physical Review Letters. 2023. Vol. 130. No. 8.
Starikovskiy A., N L Aleksandrov, Shneider M.
Plasma Sources Science and Technology. 2023. Vol. 32. No. 3.
I. V. Kolokolov, V. V. Lebedev, M. M. Tumakova.
JETP Letters. 2023. Vol. 117. No. 2. P. 122-125.
Mazanik A., Fominov Ya.V.
Annals of Physics. 2023. Vol. 449.
Bobkov G., I.V. Bobkova, Bobkov A.
Physical Review B: Condensed Matter and Materials Physics. 2022. Vol. 105. No. 2.
Materials. 2022. Vol. 14. No. 24. P. 7528-7528.
Burmistrov I., Kachorovskii V. Y., Klug M. et al.
Physical Review Letters. 2022. Vol. 128. No. 9.
Karabassov T., Bobkova I. V., Golubov A. et al.
Physical Review B: Condensed Matter and Materials Physics. 2022. Vol. 106. No. 22.
Ulyana M. Zavorotnaya, Privalov A. F., Kresse B. et al.
Macromolecules. 2022. Vol. 55. No. 19. P. 8823-8833.

Полный текст статьи можно найти на сайте издания. В нашем материале мы представим основное содержание этой статьи.
В России получили материал, который может стать основой для компактных суперкомпьютеров, высокоточных детекторов и сверхбыстрой электроники. В его основе — нанопленки из аморфного рения, которые устойчивы к воздействия и обладают свойством сверхпроводимости при относительно высоких температурах. Над проектом работали ученые из Физического института им. П.Н. Лебедева РАН (ФИАН), Высшей школы экономики и Московского физико-технического института.
— Аморфные металлы имеют неупорядоченную структуру, что придает им новые свойства. В случае рения это привело к усилению сверхпроводимости. Сверхпроводники — это материалы, электрическое сопротивление которых при сверхнизких температурах становится равным нулю. В кристаллическом виде рений — тоже сверхпроводник, но его критическая температура (при которой возникает это состояние) довольно низкая — около 1,5 градуса по Кельвину. В аморфной же форме она подскочила до 7–8К, — рассказал «Известиям» доктор физико-математических наук, ведущий научный сотрудник ФИАН и профессор факультета физики НИУ ВШЭ Александр Кунцевич.
В целом сверхпроводимостью обладает почти половина химических элементов, но для реальных применений подходят немногие. Чтобы завоевать «место под солнцем», материал должен обладать уникальными свойствами, объяснил ученый. В частности, кристаллический рений — одно из самых тугоплавких и плотных простых веществ. Чтобы его испарить и напылить тонкую пленку, ученые нагрели вещество сфокусированным пучком электронов в вакууме. Благодаря этой технологии были получены стабильные аморфные пленки толщиной в несколько десятков нанометров, подходящие для практических разработок.
Кроме того, рений устойчив к окислению и не покрывается оксидной пленкой. Вместе с тем его высокая критическая температура дает возможность применять для работы с ним наиболее дешевые системы охлаждения.
Эти свойства открывают возможность создавать на основе аморфного рения различные перспективные устройства — например, сверхпроводящие транзисторы. Как пояснил Александр Кунцевич, транзистор управляет потоком электронов, но в случае сверхпроводников речь идет о «сверхтоках», которые не рассеивают тепло и обеспечивают значительно более высокую скорость переключения по сравнению с обычной электроникой.
— Одна из идей состоит в том, чтобы соединить аморфный рений с графеном — сверхтонким слоем углерода толщиной в один атом. Когда сверхпроводник контактирует с этим материалом, его сверхпроводимость на некоторую глубину «проникает» в графен, — пояснил Александр Юрьевич.
Благодаря этому в случае графена появляется возможность управлять данным свойством с помощью электрического поля, отметил он. При этом рений в отличие от ниобия или алюминия не подвержен воздействию внешних факторов — например, окислению на воздухе. Поэтому серийное производство устройств на его основе становится вполне достижимой задачей.
По словам ученого, с помощью таких «быстрых» транзисторов можно обеспечить сопряжение сверхпроводниковой электроники с обычной кремниевой полупроводниковой. В частности, одна из ключевых проблем современных квантовых и классических суперкомпьютеров заключается в сложности их внешнего управления, поскольку для этого требуется большое количество проводов.
Сверхпроводящие транзисторы на основе рения и графена позволят обычным компьютерам, работающим при комнатной температуре, в режиме реального времени управлять конфигурацией устройств, функционирующих при температурах жидкого гелия (около 4К и ниже), например квантовых. Это открывает путь к созданию вычислительных систем, которые могут стать доступными для массового использования.
— Если помечтать и предположить в будущем уменьшение криостатов (охладителей) до настольных размеров, то на их основе можно разработать гибридные вычислители с огромной производительностью. Такие «смарт»-устройства произведут революцию в суперкомпьютерных технологиях, сделав их мобильными и персональными. Например, на них можно установить локализованные системы искусственного интеллекта, которые работают без интернета и облачных ресурсов, — сообщил Александр Кунцевич.
Он отметил, что, помимо сверхпроводящих транзисторов, полученный материал может быть востребован при производстве миниатюрных магнитов и сенсоров для измерения слабых излучений и магнитных полей.
Факультет физики: Профессор