

Факультет физики

НУГ «Создание и исследование перспективных материалов для водородной энергетики»

Москва 2024

Бесфторные и перфторированные протонообменные мембраны для водород-воздушных топливных элементов

Заворотная Ульяна Максимовна, старший преподаватель НИУ ВШЭ

Бесфторные и перфторированные протонообменные мембраны для водород-воздушных топливных элементов

Использование протон-обменных мембран на основе полимеров для создания водород-воздушных топливных элементов

Кафедра физики конденсированных сред Института физики твердого тела РАН Исследование кинетики процесса гидратации протон-обменных мембран

Химическая структура мембраны типа Нафион

Полинафтоиленимидные мембраны с гидрофильными/гидрофобными блоками

Схема синтеза и химическая структура блок-сополимера типа ODAS/MDOT-X/(1-X), где X- доля гидрофильного блока

Бесфторные и перфторированные протонообменные мембраны для водород-воздушных топливных элементов

Протонный транспорт в таких системах может происходить за счет различных механизмов:

а) механизм Grotthuss или «эстафетный» механизм;

б) транспортный или спутниковый механизм (vehicle mechanism);

в) поверхностный прыжковый механизм.

Бесфторные и перфторированные протонообменные мембраны для водород-воздушных топливных элементов

1 — Герметичный контейнер с пересыщенным солевым раствором или водой и измерительной ячейкой внутри

2 – Кабели через которые происходит изъятие данных спектрометром чтобы потом быть перенесенными на компьютер

3 – Прибор контроля влажности среды (термогигрометр «тка-пкм»)
4 – спектрометр

1 – токовые провода

2 – мембрана

- 3 платиновые электроды
- 4 тефлоновые пластины

Бесфторные и перфторированные протонообменные мембраны для водород-воздушных топливных элементов

Образцы и методы измерения

Исследования состояли из следующих этапов:

- 1. Подготовка образцов полимерных мембран размером 2 см × 2 см, их сушка в вакуумной печи (10^−2 МПа) в течение 2 часов. (Температура сушки составила: 150 °C и 120 °C).
- Создание определенной влажности в измерительной ячейки, путем помещения перед проведением эксперимента внутрь колбы пересыщенного раствора соли MgCl2 или воды, далее колба герметизировалась с помощью пробки для поддержания влажности на уровне 35 и 100 процентов, соответственно. Уровень влажности на протяжении всего эксперимент контролировался с помощью гигрометра, герметично вмонтированного в данную систему.
- 3. Измерение импедансных спектров в частотном диапазоне 1Гц-1МГц и амплитуде переменного поля 50 мВ через определенные интервалы времени в течение 10 часов выдержки мембраны в атмосфере с фиксированной влажностью 35 или 100%.
- 4. Перевод полученных экспериментальных данных в формат для программы Zview и их анализ на основании эквивалентной схемы. Расчет удельной проводимости мембраны для каждого импедансного спектра.

влажности RH=35%

Бесфторные и перфторированные протонообменные мембраны для водород-воздушных топливных элементов

Импедансные спектры мембран ODAS/MDOT и Nafion 211 в процессе их гидратации при влажности RH=100%

- экспериментальные данные
- аппроксимационная кривая
- объемный импеданс мембраны

Зависимости протонной проводимости (σ) мембран ODAS/MDOT =(85/15) и Nafion 211 в процессе их гидратации при влажностях 35 и 100%

4		
	мин	
	IVI FI I I	

Мембрана	Время до начала интенсивного роста проводимости, мин	Время до выхода на стационарные значения проводимости, мин	Исходное значение проводимости сухих мембран, мСм/см	Стационарное значение протонной проводимости, мСм/см
Nafion 211	~11	80	~5×10 ⁻³	$13 \pm 0,5$
ODAS/MDOT=	~9	150	~4×10 ⁻⁵	3 ± 0,5
85/15				

Мембрана	Время до начала интенсивного роста проводимости, мин	Время до выхода на стационарные значения проводимости, мин	Исходное значение проводимости сухих мембран, мСм/см	Стационарное значение протонной проводимости, мСм/см
Nafion 211	< 4	42 ± 3	~1	81 ± 9
ODAS/MDOT= 85/15	< 4	54 ± 3	~10 ⁻²	134 ± 10

ЯМР-спектроскопия

Прецессия магнитных моментов

РЧ-импульс на 180° поворачивает намагниченность. Время t, необходимое для возвращения намагниченности $M(t)_z$ к равновесному состоянию $M(t)_{eq'}$ экспоненциально зависит от T_1 (времени спин-решеточной релаксации):

$$M(t)_z = M(eq)_z (1 - 2e^{\frac{-t}{T_1}})$$

Ядра с ненулевым спином I обладают спиновым магнитным моментом μ с m=2 I+1 энергетическим состоянием E_m, которые расщепляются во внешнем магнитном поле B₀ (эффект Зеемана)

Изменение направления намагниченности с помощью радиочастотных импульсов

ЯМР-спектроскопия

Впервые явление спинового эха обнаружил Хан в 1950 г., исследуя поведение ядерной спиновой намагниченности под действием двух мощных радиочастотных импульсов, разделенных интервалом времени т. В этом случае через промежуток времени 2т после первого импульса возникает сигнал, амплитуда которого зависит от т и определяется временем поперечной релаксации ядерных спинов. В результате воздействия мощного импульса, оси ядерных моментов оказываются ориентированными в плоскости, перпендикулярной направлению приложенного поля. Затем моменты начинают прецессировать относительно основного поля и скорость затухания индуцированного поля определяется временем, за которое моменты снова приобретут беспорядочную ориентацию. После воздействия второго импульса векторы моментов опять поворачиваются в перпендикулярной плоскости, но направление вращения (по сравнению с первым импульсом) меняется. Через короткий отрезок времени векторы становятся синфазными и возникающее взаимодействие между двумя вращающимися составляющими намагниченности приводит к излучению эхо-импульса.

ЯМР-спектроскопия

$$S(t_e, t_m, g) = S_0 \cdot \exp\left(\frac{-t_m}{T_1}\right) \cdot \exp\left(-q^2 \cdot \left(\frac{2}{3}t_e + t_m\right) \cdot D_{NMR}\right)$$

Первый импульс 90° поворачивает намагниченность вниз в плоскость, перпендикулярную магнитному полю В₀, создавая поперечную спиновую намагниченность, которая начинает сдвигаться по фазе.

Второй импульс 90°, приложенный через время τ, поворачивает дефазированную намагниченность параллельно оси z, но противоположно магнитному полю, тем самым как бы "замораживая" ее. В течение времени t_m >> τ намагниченность уменьшается как из-за спин-решеточной релаксации, так и из-за диффузии протонов. Учитывая, что время T₁ значительно больше времени эксперимента, то все изменения сигнала при заданных условиях связаны только с диффузией протонов.

Наконец, применяется третий 90°-импульс в момент времени t_m+т, который снова поворачивает намагниченность перпендикулярно магнитному полю, а в момент времени t_m+2т наблюдается эхо-сигнал.

ЯМР-спектроскопия в статическом градиенте поля

Hahn, E.L. (1950). "Spin echoes". Physical Review. 80 (4): 580–594. Bibcode: 1950PhRv...80..580H. doi:10.1103/PhysRev.80.580

 4×10^{-9}

Коэффициенты диффузии протонов в полинафтоиленимидных полимерах с различным соотношением гидрофильных/гидрофобных блоков

Изотропный характер диффузии

со-PNIS85/15 поперечное направление Зависимости коэффициентов диффузии D_{NMR} от температуры при температурах выше точки кроссовера для со-PNIS_{70/30}, со-PNIS_{60/40} и Nafion 212 практически совпадают, тогда как для со-PNIS_{85/15} они в 2,3 раза выше.

