

НУГ «Низкотемпературная магнитно-резонансная спектроскопия»

базовая кафедра физики низких температур ФФ ВШЭ, ИФП РАН

https://physics.hse.ru/kapitza/esrgroup/

Состав группы

Глазков Василий Николаевич Руководитель НУГ

Ребров Ярослав Витальевич Студент, 1-ый курс магистратуры

Яфарова Адиля Фархадовна Студентка, 4-ый курс бакалавриата

Крастилевский Иван Александрович Студент, 4-ый курс бакалавриата

Тимченко Савелий Георгиевич Студент, 2-ой курс бакалавриата

Малиницкий Дмитрий Андреевич Студент, 2-ой курс бакалавриата

Ряжапов Айдар Хамзаевич Студент, 2-ой курс бакалавриата

Магнитный резонанс при низких температурах: как, зачем, и что нового и необычного можно узнать?

В.Н.Глазков

семинар 25.01.2024

План доклада

- «Классический» ЭПР:
 - несколько наивных идей о работе метода
 - что можно измерить
 - пример: определение параметров спинового гамильтониана в LiGdF4
- Низкотемпературная ЭПР спектроскопия в ИФП РАН
- Спиновые возбуждения в антиферромагнетиках
 - спиновые волны
 - результаты нейтронной спектроскопии и возможности магнитного резонанса
 - пример: антиферромагнитный резонанс в Ba₂MnGe₂O₇
- Магнитный резонанс в низкотемпературных парамагнетиках
 - неупорядоченные низкотемпературные состояния спиновых систем
 - примеры: магнитный резонанс триплетных возбуждений и другие...

$$\hat{H} = g \mu_B B \hat{S}_z$$

$$S = 1$$

$$\int_{\Delta S_z = \pm 1}^{+1} \frac{1}{\hbar \omega = g \mu_B B}$$

$$\hat{H} = g \,\mu_B B \,\hat{S}_z$$

Резонансная частота (B=const) или *резонансное поле* (f=const):

- определение g-фактора (зависит от магнитного иона и его окружения)
- определение анизотропии g-фактора (зависит от локальной симметрии магнитного иона и взаимодействий)
- определение количества магнитных ионов в образце

«Классический» ЭПР: релаксация $\hat{H} = g \mu_B B \hat{S}_z$ \vec{B}_0 $\Delta B_{ m случ}$ S=1 $\Delta E \simeq g \,\mu_B \Delta B_{\text{случ}}$

«Классический» ЭПР: релаксация

«Классический» ЭПР: тонкая структура

спектра

«Классический» ЭПР: тонкая структура

спектра

«Классический» ЭПР: тонкая структура

Пример: параметры спинового гамильтониана в LiGdF4

$$\hat{H}_{SI} = g \,\mu_B \vec{H} \,\hat{\vec{S}} + D \,\hat{S}_z^2 + d \,\hat{S}_z^4 + e \,\hat{S}_x^2 \,\hat{S}_y^2$$
$$\hat{H}_{pair} = \hat{H}_{SI}^{(1)} + \hat{H}_{SI}^{(2)} + \hat{H}_{dd} + J \left(\hat{\vec{S}}_1 \,\hat{\vec{S}}_2\right)$$
$$S \left(\text{Gd}^{3+}\right) = 7/2$$

S.Sosin et al. Microscopic spin Hamiltonian for a dipolar-Heisenberg magnet LiGdF₄ from EPR measurements arXiv:2210.09725; JETP Letters **116**, 778 (2022)

Пример: параметры спинового гамильтониана в LiGdF4

S.Sosin et al. Microscopic spin Hamiltonian for a dipolar-Heisenberg magnet LiGdF₄ from EPR measurements arXiv:2210.09725; JETP Letters **116**, 778 (2022)

S.Sosin et al. Microscopic spin Hamiltonian for a dipolar-Heisenberg magnet LiGdF₄ from EPR measurements arXiv:2210.09725; JETP Letters **116**, 778 (2022)

Немного о технике

Немного о технике

рис. из диссертации К.Ю.Поварова (ИФП, 2013)

фото из диссертации В.Н.Глазкова (ИФП, 2023)

Антиферромагнетики

Элементарные возбуждения ферромагнетика

Спиновые волны: элементарные возбуждения «классического» гейзенберговского (ферро)магнетика

$$\varphi_{\min} = \frac{2\pi}{N} \qquad E \approx E_0 - 2\frac{JS^2\pi^2}{N}\sin^2\Theta$$

Спектр спиновых волн в антиферромагнетике

Z. Yamani, Z. Tun, and D.H. Ryan, Neutron scattering study of the classical antiferroma[§] a perfect hands-on neutron scattering teaching course., 2010

Z. Yamani, Z. Tun, and D.H. Ryan, Neutron scattering study of the classical antiferromage a perfect hands-on neutron scattering teaching course., 2010

M Hagiwara, K Katsumatay, I Yamada and H Suzuki, Antiferromagnetic resonance in MnF2 over wide ranges of frequency and magnetic field, 1996

Пример: антиферромагнитный резонанс в Ba2MnGeO7

V. N. Glazkov, Yu. V. Krasnikova, I. K. Rodygina, H.-A. Krug von Nidda, T. Masuda, "Magnetic resonance in the quasi-2D square lattice easy-plane antiferromagnet Ba2MnGe2O7", JETP 137, 542 (2023) (arXiv:2304.01280)

Пример: антиферромагнитный резонанс в Ba2MnGeO7

V. N. Glazkov, Yu. V. Krasnikova, I. K. Rodygina, H.-A. Krug von Nidda, T. Masuda, "Magnetic resonance in the quasi-2D square lattice easy-plane antiferromagnet Ba2MnGe2O7", JETP 137, 542 (2023) (arXiv:2304.01280)

Низкотемпературные парамагнетики

«Обычные» антиферромагнетики $\hat{H} = \sum J_{ij} \hat{\vec{S}}_i \hat{\vec{S}}_j$ $S_{max} = R \ln (2S+1)$ S(0) = 0в точке перехода при Т_N~Ј в «обычных» системах S~Smax упорядоченная фаза T<T_N~J парамагнитная фаза T>T_N

Низкотемпературные парамагнетики

Низкотемпературные парамагнетики с щелевым спектром (спин-щелевые парамагнетики)

- отсутствие традиционного упорядочения вплоть до T=0
- синглетное основное состояние
- щель в спектре коллективных триплетных возбуждений

Спин-щелевые парамагнетики в магнитном поле

Т<< > Разреженный газ возбуждений

Задачи:

- эффективный гамильтониан для возбуждения с учетом негейзенберговских взаимодействий
- управление спектром возбуждений при помощи поля, управление концентрацией возбуждений при помощи изменения температуры
- взаимодействие возбуждений друг с другом

ЭСР спектроскопия в спин-щелевых

парамагнетиках

ЭСР спектроскопия в спин-щелевых

парамагнетиках

ЭПР триплетных возбуждений на примере 2D димерной системы РНСС

 $(C_4H_{12}N_2)Cu_2Cl_6$

Магнитный резонанс в РНСС

Параметры эффективной анизотропии для триплетных возбуждений

Магнитный резонанс в TICuCl₃

Магнитный резонанс в TICuCl₃

Режимы спиновой релаксации при различных температурах: димерное соединение РНСС и «спиновая лестница» DIMPY

DIMPY: (C₇H₁₀N₂)₂CuBr₄

PHCC:(C₄H₁₂N₂)Cu₂Cl₆

 $\Delta = 1.02$ мэВ

Н_{с1}≈8 Тл

*Н*_{с2}≈38 Тл

Ширина линии ЭПР в режиме газа триплетных возбуждений

Формирование парамагнитных центров при немагнитном разбавлении спин-щелевых парамагнетиков

Формирование парамагнитных центров при немагнитном разбавлении спин-щелевых парамагнетиков

Формирование парамагнитных центров при немагнитном разбавлении спин-щелевых парамагнетиков

Выводы

Магнитно-резонансная спектроскопия представляет широкий набор (иногда уникальных) возможностей для изучения низкотемпературных физических свойств различных спиновых систем