04,07

Аморфный лед средней плотности, полученный разложением водно-гелиевого геля

© В.В. Синицын^{1,2}, О.Г. Рыбченко^{1,2}, В.Б. Ефимов¹, А.А. Вирюс³

¹ Институт физики твердого тела РАН,

Черноголовка, Россия

² Национальный исследовательский университет "Высшая школа экономики",

Москва, Россия

³ Институт экспериментальной минералогии РАН,

Черноголовка, Россия

E-mail: sinitsyn@issp.ac.ru

Поступила в Редакцию 8 июня 2023 г. В окончательной редакции 26 июня 2023 г. Принята к публикации 28 июня 2023 г.

Представлены экспериментальные исследования структурных изменений, происходящих при нагреве в наноразмерных порошках аморфного льда, полученного разложением водно-гелиевого геля. Термические отжиги полученного образца осуществлялись путем последовательных непродолжительных выдержек (порядка 15 минут) при различных температурах в интервале 110-230 К. Анализ поведения аморфной фазы в ходе отжига проводился в рамках ее описания смесью аморфных льдов низкой и средней плотности (*LDA* и *MDA* соответственно). Найдено, что в рамках такого описания исходный образец преимущественно находится в *MDA* состоянии, а доля *LDA* фазы примерно в семь раз меньше (*MDA/LDA* $\approx 7:1$). Установлено, что в процессе отжигов имеет место многоступенчатый процесс структурных превращений исходного *LDA* + *MDA* образца: от начальных изменений аморфного состояния при 110 К через кристаллизацию кубической фазы льда I_c с ее интенсивным ростом при температуре 130 К до превращения кубического льда в гексагональную фазу I_h в температурном интервале T = 135-230 К.

Ключевые слова: лед, аморфное состояние, кристаллизация, аморфный лед средней плотности, примесьгелиевые гели, рентгеноструктурный анализ.

DOI: 10.21883/FTT.2023.08.56147.103

1. Введение

В настоящее время разработано несколько методов, позволяющих получать аморфный лед из всех трех агрегатных состояний H₂O: газообразного (пар) [1], жидкого (воды) [2-8] и кристаллического (гексагональный лед I_h и лед высокого давления VIII) [9–16]. Впервые существование аморфного льда было открыто в 1935 г., когда Barton и W.F. Oliver провели исследования образцов, полученных напылением водяного пара на подложку, охлажденную до температур кипения жидкого азота [1]. В литературе этот лед носит аббревиатуру ASW (amorphous solid water). С другой стороны, хорошо известно, что многие жидкости при охлаждении со скоростями выше некоторой критической переходят в стекло (аморфное состояние, получаемое закалкой соответствующего расплава). Однако воду, несмотря на то, что она сравнительно легко может быть переохлаждена на $\sim 15{-}20$ градусов ниже точки плавления, продолжительное время не удавалось витрифицировать. Оказалось, что для витрификации воды необходимо ее охлаждать с экстремально высокими скоростями > 10⁵ K/s [3,4]. Этот процесс охлаждения в литературе называется "гиперзакалкой" (hyperquenching), а получаемый аморфный лед — hyperquenching glassy water (HGW) [3-8]. По

многим физическим свойствам (плотность, область термической стабильности, структурные факторы рентгеновского и нейтронного рассеяния) состояния ASW и HGW близки между собой, имеют плотность 0.94 g/cm³ и эти льды относят к аморфному льду низкой плотности (LDA) [7,17–20].

Возможность получения аморфного льда из кристаллической фазы была впервые продемонстрирована в работе [9]. Авторы [9] экспериментально показали, что при сдавливании кристаллического льда *I_h* при температурах $\sim 77 \, \text{K}$ и давлении $\sim 1.1 - 1.2 \, \text{GPa}$ происходит аморфизация образца с плотностью 1.15-1.17 g/cm³ [10,21,22]. Образующийся в результате такого "холодного плавления" аморфный лед оказался почти на 20% плотнее LDA модификации и получил название "аморфный лед высокой плотности" (HDA) [9-11]. При нагревании этого аморфного льда выше $T \sim 117 \,\mathrm{K}$ при 1 atm наблюдался переход в менее плотную модификацию, которая соответствует LDA фазе [9,10,11,19]. Более того, если эта фаза LDA затем сжималась при $T \sim 130$ K, то при давлении *P* ~ 0.3 GPa происходил фазовый переход І-го рода в состояние HDA, которое обратимо возвращалось в LDA, когда давление изотермически сбрасывалось ниже $\sim 0.05 \,\text{GPa}$ [20]. Путем различных термообработок *HDA* состояния удалось получить еще более плотные аморфные фазы [23,24].

Недавно была обнаружена еще одна форма аморфного льда, которая была получена путем длительного (более 40 h) перемола кристаллического льда I_h при температуре кипения жидкого азота (~ 77 К) и получила название "аморфный лед средней плотности" (MDA) [25]. Полученные образцы, наряду с аморфной фазой MDA, содержали большое количество остаточного гексагонального льда. Исследования показали, что плотность MDA льда составляет $\sim 1\,{
m g/cm^3}$ и при его нагреве происходит фазовый переход в *I_h* кристаллическую фазу $(T \sim 150 \,\text{K}, 1 \,\text{atm})$ с тепловым эффектом $\sim 1.21 \,\text{kJ/mol.}$ В процессе сжатия *MDA* льда ($T \sim 77 \, \text{K}$) он переходит в HDA фазу примерно при тех же давлениях, что и І_h лед, но с несколько меньшим скачком объема. Структурные исследования показывают, что положение первого гало MDA льда на Си-излучении находится примерно на $2\Theta \approx 27$ grad, что ближе к положению первого гало для *HDA* фазы ($2\Theta \ge 28 \text{ grad}$) [8,9,18,25], чем для LDA (2 $\Theta \approx 24$ grad) [7,8,9,18,26,27]. Однако, в спектрах неупругого рассеяния света (Рамановская спектроскопия) положение частот О-Н продольной моды для MDA льда оказывается более близким к спектру LDA, а не HDA льда [25]. Авторами было предположено, что MDA состояние соответствует структуре воды при нормальных условиях.

Структурные особенности воды можно исследовать in situ в ее равновесном состоянии [28,29], а можно, делая сверхбыстрые закалки, попытаться заморозить структуру равновесного состояния и изучать ее на получающемся аморфном льде. Одним из способов получения образцов льда в аморфном состоянии является методика формирования наноразмерных образцов при распаде примесь-гелиевых гелей [30]. Суть процесса сводится к быстрой закалке смеси малого количества водяного пара (в качестве примеси) с большим количеством газообразного гелия, в качестве среды, до температуры 1.6 К. При этом формируются кластеры молекул воды, окруженные большим количеством атомов гелия. Наличие гелиевого окружения вокруг полярных молекул H₂O препятствует кристаллизации воды и приводит к формированию водно-гелиевого геля, состоящего из частиц размером в 30-60 nm, который после отогрева до азотных температур и возгонки атомов гелия превращается в аморфный лед [31]. Таким образом, образцы аморфного льда, полученные описанным способом (далее именуемые NPA — nano particle amorphous лед), представляют собой порошок из наноразмерных частиц с развитой свободной поверхностью. Образование наночастиц аморфного льда через примесно-гелиевый гель можно рассматривать как моделирование процессов аморфизации, происходящих с кластерами свободной воды в верхних слоях атмосферы, или, учитывая температуру космического микроволнового фона и доминирующее количество легких атомов в межзвездном пространстве,

как моделирование процессов образования кластеров льда в космическом пространстве.

В связи с этим представлял интерес детального структурного анализа аморфных образцов, получаемых при распаде гелиевого геля, и изучение фазовых превращений, происходящих в них при нагреве. Такие исследования были выполнены в данной работе и, было показано, что получаемый таким образом наноразмерный аморфный лед соответствует в большей мере *MDA* состоянию.

Экспериментальные методы и образцы

Исходные образцы аморфного льда NPA были получены с помощью описанного выше метода распада примесно-гелиевого геля. Этот способ использовался также в работах [30-36]. Более подробно технология синтеза образцов льда NPA описана в [30-32]. Доля паров воды в охлаждаемой до температуры сверхтекучего гелия водно-гелиевой смеси составляла ~ 2-3%. Указанная концентрация паров воды в потоке газообразного гелия была получена барботированием гелия через дистиллированную воду, а давление пара газовой смеси при комнатной температуре составляло 18-22 Torr. Затем водно-гелиевая смесь вводилась через специальную стеклянную трубку заполнения (D = 1.5 cm), конец которой находился в сверхтекучем гелии на глубине $\sim 1 \, \text{сm}$ (температура сверхтекучего гелия 1.6 K). Охлажденная таким образом смесь конденсировалась в виде геля и оседала на дне кварцевой ампулы. Образующийся гель состоит из конгломератов полярных молекул воды, окруженных локализованными атомами гелия. Скорость конденсации частиц смеси воды и гелия в гель была порядка 10²⁰ атомов (molecules)/s, концентрация молекул воды в геле достигала величины в несколько процентов. Скорость охлаждения водно-гелиевой смеси, оцененная по времени прохождения смеси вдоль трубки заполнения с градиентом температуры от 300 К до ≈ 1 K, была порядка 103 K/s. Порошок аморфного льда после сублимации гелия из образца перемещали из гелиевого дьюара за время 3-5 секунд в жидкий азот, где образец хранился до рентгеновских измерений.

Низкотемпературные дифракционные измерения проводились на рентгеновском дифрактометре Siemens D500 с использованием Cu K_{α} -излучения в проточном азотном рентгеновском криостате CRYO205S. Комбинированная система регулировки потока газообразного азота и нагрева держателя образца обеспечивала высокую точность контроля и стабилизации температуры. Образец загружался через боковой фланец дифракционной камеры. Такая схема позволяет быстро, менее чем за десять секунд, произвести холодную загрузку образца на кремниевой подложке из ванны с жидким азотом в рабочую камеру криостата. Температура держателя образца при этом не поднималась выше 85 К. Глубина выемки диаметром 10 mm в кремниевой подложке, куда помещался порошкообразный образец, составляла 0.3 mm.

Изучение влияния режимов отжига на структурные изменения проводили путем последовательного повышения температуры образца до температуры отжига и выдержки образца в этих условиях в течение контролируемого времени (обычно 15 min) с последующим охлаждением до температуры измерения. Температура при отжиге поддерживалась с точностью ±1 К. Продолжительность рентгеновского сканирования составляла порядка нескольких часов, рентгенографические исследования проводились при температуре, близкой к азотной ($T_{X-Rav} \approx 85 \,\mathrm{K}$). Такая температура была выбрана во избежание возможных структурных изменений при рентгеновских исследованиях, поскольку наши предыдущие данные [33,34] показали высокую структурную стабильность образцов нанокластерного аморфного льда при температуре жидкого азота. После рентгеновского измерения процедуру отжига повторяли при более высокой температуре. Обработку рентгеновских спектров проводили с помощью программы TOPAS.

3. Экспериментальные результаты

Спектры рентгеновского рассеяния исходного образца при температуре 85 К, а также при его последовательном нагреве до температур 110 и 120К представлены на рис. 1. Видно, что кроме двух аморфных гало все исследованные спектры содержат слабые кристаллические рефлексы. Анализ показывает, что эти отражения относятся к кристаллическим фазам — гексагональному *I_h* и кубическому *I_c* льдам, которые, по-видимому, образовались из паров воды в воздухе лаборатории в процессе переноса образца в рабочую камеру криостата. Суммарная доля кристаллических фаз в исходном образце не превышает 5%. Интенсивность кристаллических рефлексов при нагреве образца до 110 К практически не изменяется (рис. 1, *a*, *b*). Кроме того, рентгенограммы всех образцов содержат один или два слабых пика в области углов дифракции 19-20°, которые не могут быть идентифицированы ни как известные кристаллические фазы льда, ни как известные кристаллические клатраты гелия и азота. Эти линии исчезают после отжига образца при 230 К. Природа этих линий требует дополнительных исследований.

Положения аморфных гало на спектре исходного образца равны $2\theta \approx 26^{\circ}$ и 43.5° для 1-го и 2-го гало соответственно. Согласно многочисленным исследованиям, положение первого гало для *LDA* льда в рентгеновском Си K_{α} -излучении составляет $2\theta \approx 24^{\circ}$ [7,8,9,18,24,26] для *HDA* льда $2\theta \geq 28^{\circ}$ [8,9,18,25,27], а для недавно открытого *MDA* льда $2\theta \approx 27.2^{\circ}$ [25].

Учитывая способ получения образцов *NPA* льда, естественно ожидать, что его структура близка к *LDA*. Однако положение гало в нашем случае значительно отличается от известного из литературы значения для

LDA льда в сторону больших углов рассеяния. Это можно объяснить, исходя из предположения, что полученное аморфное состояние — смесь двух аморфных модификаций, одна из которых является льдом низкой плотности LDA, а вторая имеет большую плотность. Мы полагаем, что такая ситуация может иметь место, так как принципиальная возможность одновременного сосуществования в образце двух аморфных фаз, а также превращения одной из этих форм в другую неоднократно была показана на примере льдов разной плотности в работах, посвященных изучению полиаморфизма льда

На рис. 1 приведен способ описания рентгеновских спектров образца NPA в предположении двухаморфного состояния с малой долей кристаллических $(I_h + I_c)$ включений для исходного образца, а также для образцов после выдержки при 110 и 120 К; тонкими линиями показано разложение первого аморфного гало на две фракции. При разложении положение гало для LDA модификации фиксировалось на значении $2\theta = 24^{\circ}$, что соответствует литературным данным. Положение гало для второй аморфной фазы определялось при разложении спектра исходного образца из условия минимизации отклонения между расчетной и экспериментальной кривыми. В результате такого разложения оказалось, что соотношение долей аморфных фракций в исходном образце приблизительно составляет MDA/LDA ≈ 7:1 (при доле кристаллических включений ~ 5%).

Определенное таким образом положение гало для второй аморфной фазы ($2\theta \approx 26.8^{\circ}$) оказалось очень близко к значению для *MDA* льда по данным работы [25] ($2\theta \approx 27.2^{\circ}$). Небольшое различие этих величин, свиде-

ный (а), после отжигов при 110 К (b) и 120 К (c); тонкие

линии тех же цветов показывают разложение экспериментальных гало на компоненты LDA и MDA; кривая фона не

показана, чтобы не загромождать рисунок, кристаллические

линии соответствуют *I_h* и *I_c* льдам.

при высоких давлениях [37,38].

тельствующее о меньшей плотности полученного нами аморфного льда по сравнению с *MDA* льдом, может быть связано с наноразмерным характером порошка *NPA* (30–60 nm). Такое значительное уменьшение размера частиц может привести к изменению межмолекулярных расстояний в *NPA* образцах с большой долей приповерхностных молекул, то есть к уменьшению плотности.

Таким образом, проведенный анализ экспериментальных данных позволяет предположить, что синтезированный при распаде водно-гелиевого геля образец состоит из двух фаз аморфного льда, при этом большая часть ($\sim 83\%$) является льдом средней плотности *MDA*. При этом соотношение долей аморфных фракций для исходного образца приблизительно составляет *MDA/LDA* $\approx 7:1$ (при доле кристаллических включений $\sim 5\%$).

После отжига исходного образца при температуре T = 110 К положение 1-го аморфного гало смещается в область малых углов примерно на 0.3° с очень незначительным уменьшением его полуширины. Это можно объяснить частичным превращением $MDA \rightarrow LDA$. Подобное превращение одной аморфной модификации в другую наблюдается при нагреве льда высокой плотности (HDA) и переходе его в LDA. Действительно, при фиксированных положениях максимумов гало для двух аморфных фаз на $2\theta = 24^{\circ}$ (LDA) и $2\theta = 26.8^{\circ}$ (MDA) смещение суммарного гало в сторону малых углов рассеяния означает изменение соотношения долей двух его компонентов: количество аморфного льда средней плотности MDA уменьшается, а количество LDA несколько увеличивается (рис. 1, a, b). Другое объяснение такому поведению аморфной составляющей образца может заключаться в процессе релаксации. Незначительное смещение аморфного гало MDA льда в сторону меньших углов рассеяния также наблюдалось на начальных стадиях нагрева в работе [25]. Отметим, что на этой стадии отжига аморфной фазы могут происходить и другие процессы, приводящие к смещению суммарного аморфного гало, например, релаксация аморфного состояния или окончательное удаление остаточного гелия из NPA образца, что также может несколько изменять его плотность. Поэтому для окончательных выводов о характере наблюдаемых слабых изменений содержания аморфной фракции в NPA образце при 110 К требуются дополнительные более детальные исследования кинетики превращения.

При температуре отжига 120 К суммарное содержание аморфных фаз несколько снижается (рис. 1, c) и начинает образовываться кубический лед I_c , но его доля, а значит, и скорость кристаллизации еще малы. При этом форма и положение общего аморфного гало продолжают изменяться: при незначительном уменьшении количества аморфной фазы в образце (после отжига при 120 К примерно на 7%) максимум гало заметно смещается в сторону малых углов рассеяния (рис. 1, a).

Следует отметить, что для проведения количественного анализа соотношения двух аморфных фаз необ-

Рис. 2. Зависимости суммарной доли аморфных (LDA + MDA) и долей кристаллических фаз (I_h и I_c) от температуры отжига.

ходимо знать точные параметры их гало, полученные экспериментальным путем для каждой модификации отдельно, что сделать в нашем случае не представляется возможным. Кроме того, некоторый вклад в смещение суммарного аморфного гало в сторону меньших углов может вносить образование очень мелких кристаллитов на начальном этапе кристаллизации кубического льда I_c , так как его линия (111) в положении $2\theta \sim 24.25^\circ$ совпадает с малоугловой частью гало. Таким образом, это превращение также вносит ошибку в оценку количества LDA фазы при наличии процесса кристаллизации в образце. Учитывая эти обстоятельства, доли аморфных фаз и их изменение с температурой можно оценить только качественно. В связи с этим на рис. 2 представлена зависимость от температуры отжига только суммарного количества аморфной фракции (LDA + MDA), а также показано изменение долей кристаллических фаз.

Спектр рентгеновского рассеяния исследуемого образца, отожженного при температурах 130, 135 и 140 К, представлен на рис. 3. При температуре 130 К процесс кристаллизации образца ускоряется с образованием кубического льда I_c (его доля достигает ~ 18% всего образца, рис. 2) и уменьшением доли аморфной составляющей. В ходе выдержки образцов при T = 135 и 140 К (рис. 3, зеленая и синяя кривые соответственно) в кристаллических фазах протекают два параллельных процесса: образование I_c (из аморфной фазы появляются новые мелкие кристаллиты и растут ранее образовавшиеся) и начинается превращение кубического льда в гексагональный $I_c \rightarrow I_h$.

После отжига при 140 К содержание фазы I_h составляет уже ~ 22%, а кубического льда $I_c \sim 28\%$ (рис. 2). Количество аморфной фракции значительно уменьшается, хотя она не исчезает полностью. При этом в ходе выдержки при T = 135 К в ней происходят более сложные процессы: количество фазы *MDA* уменьшается, а вместо гало *LDA* появляется некоторая подложка

Рис. 3. Спектр рентгеновского рассеяния льда при отжиге при: 130 К — красная кривая; 135 К — зеленая кривая; 140 К — синяя кривая.

("пьедестал") под линиями кристаллических фаз. Эта особенность изменения дифракционной картины в процессе кристаллизации аморфного льда также рассматривалась в [13,37]. Механизм начальных стадий кристаллизации при этой температуре можно объяснить следующим образом. Известно, что при температуре стеклования $T_g = 136 \,\mathrm{K}$ происходит эндотермический переход из "замороженного" аморфного в сверхвязкое жидкое состояние [7,8,18]. Поэтому можно предположить, что наблюдаемый аморфоподобный "пьедестал" в спектре рассеяния рентгеновских лучей при температуре 135 К связан с этим переходом. Тогда после охлаждения сверхвязкой жидкости от температуры отжига (~ 135 K) до температуры рентгеновского измерения (85 К) происходит образование очень мелких (< 5 nm) кристаллитов с небольшим количеством аморфной матрицы между ними. Существование такой "промежуточной" фазы было предложено в [37], где это состояние было обозначено как "ограниченная" аморфная фаза (Iar). При этом нанокристаллическая фракция может представлять собой нанокристаллы Іс, содержащие кристаллографические дефекты в виде гексагональных прослоек или смесь наноразмерных зародышей двух кристаллических фаз Іс и *I_h* одновременно. В нашем случае значительная часть образующихся нанокристаллов должна иметь структуру, близкую к гексагональному льду, о чем свидетельствует последующий интенсивный рост линий I_h при 140 K (рис. 3, синяя кривая).

Дальнейшее повышение температуры продолжает процесс кристаллизации (рис. 4). На спектрах исследуемого образцов после отжига при 150 и 160 К линии кристаллических фаз располагаются на еще заметном "пьедестале", соответствующем "ограниченной" аморфной фазе I_{ar} . Окончательно кубический лед переходит в гексагональный только при температурах выше 200 К. Отжиг при 230 К завершает превращение $I_c \rightarrow I_h$ и приводит к исчезновению (в пределах погрешности эксперимента) неупорядоченной компоненты. Размеры формирующихся кристаллитов I_h льда (~ 30–40 nm) соответствуют размерам нанообразцов NPA, полученных из экспериментов по малоугловому рассеянию нейтронов [31]. Наблюдаемое структурное поведение исследуемого образца хорошо соответствует данным калориметрии MDA и LDA фаз [18,25].

4. Обсуждение

Отжиг исходного образца, проведенный при температуре 110 К, приводит, на первый взгляд, к небольшому изменению соотношения *MDA* и *LDA* модификаций, т. е. превращению *MDA* льда в *LDA*. Однако, как было сказано выше, невозможно получить точное количественное соотношение двух аморфных фракций, ввиду большой погрешности в их определении. Кроме того, на начальных стадиях отжига аморфной фазы могут происходить другие процессы, приводящие к смещению суммарного аморфного гало, например, релаксация аморфного состояния или окончательное удаление остаточного гелия из *NPA* образца, что также может несколько изменять его плотность. Таким образом, для прояснения природы наблюдаемых слабых изменений аморфной фракции

Рис. 4. Дифрактограмма образца после отжига при температурах: красный цвет — 150 К, зеленый — 160 К, синий — 200 К, черный — 230 К.

образцов *NPA* на начальном этапе отжигов требуются дополнительные более детальные исследования.

Результаты проведенных нами рентгеновских исследований можно интерпретировать в рамках предложенной авторами [25] структуры MDA состояния, близкого к структуре воды при нормальных условиях, учитывая то, что основное аморфное гало в наших исследованиях $(2\theta \approx 26.8^{\circ})$ и в работе [25] $(2\theta \approx 27.2^{\circ})$ близки. В рамках такой интерпретации аморфная составляющая образца состоит из двух аморфных фаз — LDA и MDA, причем доля последней составляет не менее 83%. Проведенные рентгеновские исследования в процессе отжига полученного образца позволили установить, что MDA фаза в наших экспериментах сохраняется при 120, 130, 135 и 140 К (рис. 1 и 3) и окончательно исчезает только после отжига образца при 150 К (рис. 4, *a*). Эти результаты хорошо согласуются с калориметрическими данными работы [25]. Более того, уменьшение количества MDA фазы хорошо коррелирует с ростом доли кубического льда I_c, тогда как количество LDA остается практически неизменным (в пределах ошибки) в ходе отжигов образца до температуры 135 К. Это позволяет предположить, что в NPA образце происходят два параллельных процесса: кристаллизация MDA льда через образование кубической фазы в гексагональную и превращение LDA при достижении температуры $T = 135 \,\mathrm{K}$ в "ограниченную" I_{ar} фазу с последующей кристаллизацией.

Здесь следует отметить, что из-за наноразмерного состояния порошка в получаемом *NPA* образце может иметь место некоторое изменение ближнего порядка молекул H₂O, находящихся вблизи границы порошинок, по сравнению с объемом. При этом полученная моди-

фикация NPA аморфного льда по структуре аморфной сетки может являться неким промежуточным состоянием между сетками *lda* и *mda* фаз с меняющимся по глубине частицы ближним порядком, а не смесью двух отдельных фаз. Однако важно подчеркнуть, что и в этом случае большая часть аморфной структуры NPA образца близка к аморфному льду средней плотности.

Нагрев полученного аморфного образца выше 140 К приводит к значительному уменьшению доли всей аморфной составляющей в образце и росту кристаллов сначала кубической I_c , затем гексагональной I_h фаз льда. Качественно процесс кристаллизации аморфных образцов из водно-гелиевых гелей оказался сходным с наблюдавшимися ранее и описанными в литературе фазовыми превращениями в других аморфных водных льдах при их нагреве выше 135–140 К [8,10,13,16,18,21,24,27,37].

В целом, полученные данные хорошо коррелируют с результатами работы [25]. Кинетика фазовых переходов для аморфного льда, полученного методом перемола (сильной пластической деформации), и образцов, полученных из водно-гелиевого геля, может различаться из-за разницы размеров частиц конгломератов (десятки микрон для перемола и десятки нанометров для гелиевого метода) и наличием большого количества остаточного гексагонального льда (десятки процентов) в методе перемола.

5. Заключение

Проведено изучение структурных превращений, происходящих при нагреве в наноразмерном ($\sim 30-60$ nm) аморфном порошке льда, полученного в результате распада водно-гелиевого геля (NPA). Особенностью данного метода является закалка смеси паров воды в большом количестве газообразного гелия на поверхности сверхтекучего гелия. Результаты проведенных рентгеновских исследований интерпретировались на основе предложенной авторами [25] новой фазы аморфного льда средней плотности (MDA), близкой к структуре воды при нормальных условиях. Установлено, что в рамках такого описания доля MDA фазы в полученном образце составляет более 80%, остальная часть образца представляет собой LDA лед, а также следы кубического и гексагонального кристаллических льдов, суммарным количеством около 5%, что значительно ниже доли кристаллического льда, получаемого методом перемола [25].

Нагрев полученного аморфного (*NPA*) образца приводит к уменьшению доли аморфной составляющей и образованию сначала кубической I_c , затем гексагональной I_h фаз льда. Кристаллизация происходит через формирование промежуточного аморфно-нанокристаллического состояния, называемого в литературе "ограниченной" фазой (I_{ar}).

Найдено, что процесс кристаллизации аморфных образцов, полученных из водно-гелиевых гелей, оказался сходным с наблюдавшимися ранее и описанными в литературе фазовыми превращениями в аморфных льдах, полученных другими методами.

Финансирование работы

Работа выполнялась по государственному заданию ИФТТ РАН. В.В. Синицын благодарит научнообразовательный проект НИУ ВШЭ (№ 23-00-001) за финансовую поддержку.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- E.F. Burton, W.F. Oliver. Proc. R. Soc. Lond. A 153, 166 (1935).
- [2] P. Brüggeller, E. Mayer. Nature 288, 569 (1980).
- [3] G.P. Johari, A. Hallbrucker, E. Mayer. Nature 330, 552 (1987).
- [4] G.P. Johari, A. Hallbrucker, E. Mayer. Science 273, 90 (1996).
- [5] A. Hallbrucker, E. Mayer, G.P. Johari. Phil. Mag. B 60, 179 (1989).
- [6] J.P. Johari, A. Hallbrucker, E. Mayer. J. Chem. Phys. **92**, 6742 (1990).
- [7] A. Hallbrucker, E. Mayer, G.P. Johari. J. Chem. Phys. 93, 4986 (1989).
- [8] I. Kohl, L. Bachmann, A. Hallbrucker, E. Mayera, T. Loerting. Phys. Chem. Chem. Phys. 7, 3210 (2005).
- [9] O. Mishima, L.D. Calvert, E. Whalley. Nature **310**, 393 (1984).
- [10] E. Whalley. J. Less-Common Met. 140, 361 (1988).
- [11] O. Mishima, L.D. Calvert, E. Whalley. Nature **314**, 76 (1985).
- [12] D.D. Klug, Y.P. Handa, J.S. Tse, E. Whalley. J. Chem. Phys. 90, 2390 (1989).

- [13] A.M. Balagurov, O.I. Barkalov, A.I. Kolesnikov, G.M. Mironova, E.G. Ponyatovskii, V.V. Sinitsyn, V.K. Fedotov. JETP Lett. 53, 30 (1991).
- [14] V.V. Sinitsyn, A.I. Kolesnikov. High Press. Res. 9, 225 (1991).
- [15] Koichiro Umemoto, Renata M. Wentzcovitch. Phys. Rev. B 69, 180103 (2004).
- [16] O. Mishima. Proc. Jpn. Acad. B 86, 165 (2010).
- [17] M.C. Bellissent-Funel, L. Bosio, A. Hallbrucker, E. Mayer, R. Sridi-Dorbez. J. Chem. Phys. 97, 1282 (1992).
- [18] T. Loerting, N. Giovambattista. J. Phys.: Condens. Matter. 18, R919 (2006).
- [19] T. Loerting, K. Winkel, M. Seidl, M. Bauer, Ch. Mitterdorfer, Ph.H. Handle, Ch.G. Salzmann, E. Mayer, J.L. Finney, D.T. Bowron. Phys. Chem. Chem. Phys. 13, 8783 (2011).
- [20] O. Mishima. J. Chem. Phys. 100, 5910 (1994).
- [21] О.В. Стальгорова, Е.Л. Громницкая, В.В. Бражкин, А.Г. Дяпин. Письма в ЖЭТФ 69, 9, 653 (1999).
- [22] Е.Л. Громницкая, А.Г. Дяпин, О.В. Стальгорова, И.В. Данилов, В.В. Бражкин. Письма в ЖЭТФ 96, 12, 879 (2012).
- [23] R.J. Nelmes, John S. Loveday, Thierry Strässle, Craig L. Bull, Malcolm Guthrie, Gérard Hamel, Stefan Klotz. Nature Phys. 2, 414 (2006).
- [24] T. Loerting, C. Salzmann, I. Kohl, E. Mayer, A. Hallbrucker. Phys. Chem. Chem. Phys. 3, 5355 (2001).
- [25] Alexander Rosu-Finsen, Michael B. Davies, Alfred Amon, Han Wu, Andrea Sella, Angelos Michaelides, Christoph G. Salzmann. Science **379**, 474 (2023).
- [26] M.S. Elsaesser, K. Winkel, E. Mayer, T. Loerting. Phys. Chem. Chem. Phys. 12, 708 (2010).
- [27] T. Loerting, C. Salzmann, I. Kohl, E. Mayer, A. Hallbrucker. Phys. Chem. Chem. Phys. 3, 5355 (2001).
- [28] Ph. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.Å. Näslund, T.K. Hirsch, L. Ojamäe, P. Glatzel, L.G.M. Pettersson, A. Nilsson. Science **304**, 995 (2004).
- [29] C. Huang, K.T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T.M. Weiss, Y. Horikawa, M. Leetmaa, M.P. Ljungberg, O. Takahashi, A. Lenz, L. Ojamäe, A.P. Lyubartsev, S. Shin, L.G.M. Pettersson, A. Nilsson. PNAS **106**, 15214 (2009).
- [30] V. Efimov, L. Mezhov-Deglin. Patent N 2399581 (2010).
- [31] V.B. Efimov, L.P. Mezhov-Deglin, C.D. Dewhurst, A.V. Lokhov, V.V. Nesvizhevsky. Physics ID 808212 (2015). (http://dx.doi.org/10.1155/2015/808212)
- [32] L.P. Mezhov-Deglin. Phys.-Usp. 48, 1061 (2005).
- [33] V. Efimov, A. Izotov, L. Mezhov-Deglin, V. Nesvizhevskii, O. Rybchenko, A. Zimin. Low Temper. Phys. 41, 603 (2015).
- [34] V.B. Efimov, A.N. Izotov, A.A. Levchenko, L.P. Mezhov-Deglin, S.S. Khasanov. JETP Lett. 94, 621 (2011).
- [35] V.B. Efimov, L.P. Mezhov-Deglin, O.G. Rybchenko. Low Temper. Phys. 46, 155 (2020).
- [36] L.P. Mezhov-Deglin, A.M. Kokotin. JETP Lett. 70, 756 (1999).
- [37] Peter Jenniskens, David F. Blake. Science 265, 753 (1994).
- [38] Philip H. Handle, Thomas Loerting. J. Chem. Phys. **148**, 124508 (2018).

Редактор Т.Н. Василевская