Quantum nano-plasmonics for biosensing and bioimaging on the level of single molecules and virions

Institute of Spectroscopy, Moscow, Russia

Structure of the talk

1. Detection of single molecules in biology and medicine

2. Optical microscopy and spectroscopy of single molecules

3. Detection of single molecules and virions

4. Quantum engineering of radiative properties of nanoscale emitters of light

I. Detection of single molecules in biology and medicine

Single-molecule experiment relying on fluorescence detection is dominating over all other optical techniques for the last 20 years

NAT MDCCCC XXXIII OB MDCCCC XCVI

2014 NOBEL PRIZE IN CHEMISTRY

Eric Betzig Stefan W. Hell William E. Moerner

The Nobel Prize in Chemistry 2022 for the development of click chemistry and bioorthogonal chemistry

K. Barry Sharpless

The Nobel Prize in Chemistry 2022

Morten Meldal

The click reaction that changed chemistry

Azides and alkynes react very efficiently when copper ions are added. This reaction is now used globally to link molecules together in a simple manner.

Carolyn R. Bertozzi

Is it possible to find a single specific molecule (analyte) in a big volume?

Ultra-low concentration in optics, how much low is it?

Ultra-low concentration in optics, how much low is it?

Optical Sensing approaches

Refractive Index Measurements

Single Molecules Detection

Detection limit: 10⁸ molecules (≈ 20 pM)

Detection limit: 1 molecule!!!

Single-Molecules-Counting Method

Concentration amplification in a sample

(I) Concentration of analyte molecules on the functionalized surface

"Catastrophe" of the Langmuir binding isotherm

"Catastrophe" of the Langmuir binding isotherm Fraction Bound (%)

Latour, Robert A. "The Langmuir isotherm: a commonly applied but misleading approach for the analysis of protein adsorption behavior." *Journal of Biomedical Materials Research Part A* 103.3 (2015): 949-958.

Selected applications of fluorescence of single molecules in our lab

Example -1: control of Troponin molecules in blood

Example-2: detection of virus particles

Schematic of SARS-CoV-2 virion

Example 3: Single DNA molecule sequencing

Real-Time DNA Sequencing from Single Polymerase Molecules

John Eid, *et al. Science* **323**, 133 (2009); DOI: 10.1126/science.1162986

Zero Mode Waveguide

•	•	•						
					*******		******	1

								:
	*****	*********				******		1
********			********		*********			:
*****								1
								: :
								1 1
*****				*********				-
***********	*********							1
************	******			******				:
*************	******		*****		*******		****	1
***********	********	** *******		*****	*********	*****	******	:
**********	******	*******			******			1
******		********	***** ***		*****			1
			and the second		*******			1
***********	*********			*********				:
								:
******					*******			1
***********		*****	*******		********			:
* * * * * * * * * * * * * * * * * *	*******			*****				:
	********							:
**********		********		*****			********	
								:
-								
		******		********	*******			
	*******		*******	*******				-
***********								1
**********		*******		*****			*******	
	********	*********			*********		********	1

"THIRD" GENERATION SEQUENCING (large fragment single molecule)

2. Optical microscopy and spectroscopy of single molecules

Marking of biomolecules via antibodies

.

Nanolocalized sources of light– fluorescent markers

Nanolocalized sources of light

Single atoms and ions

Dye molecule

Fluorescent proteins

Defects in crystals

Comparison of different emitters of light

Emitter	FWHM (nm)	$I_{sat} \left(\frac{W}{cm^2}\right)$	$\sigma_{rad}~(cm^2)$	$\Phi_{max} = \frac{I_{sat} * \sigma_{rad}}{FWHM} \\ (W/nm)$	Quantum yield	Size
Quantum dot	~40	~10 ³	~10 ⁻¹⁴	~2,5 * 10 ⁻¹³	30-50%	~5 nm
Dye molecules	~40	~10 ⁶	~10 ⁻¹⁶	~2,5 * 10 ⁻¹²	20-100%	~10 Å
Defects in diamond	~5 (ZPL, 300K) ~150 (PSB, 300K)	$\sim 10^4 - 10^5$	~10 ⁻¹⁶	> 2 * 10 ⁻¹³	1-10%	~5 nm — 100 nm
Single atom	~6 <i>MHz</i>	~10 ⁻³	$\sim 10^{-8}$	$\sim 10^{-5}$	100%	~2 Å

Saturation effect of the photon flux

Photon flux vs laser power

Fluorescence microscopy of single molecules

Problems of available quantum emitters of light

1. Low photon flux

2. Large spectral width

3. Photodegradation

Low photon flux and tight focusing of laser light

Detected signal = $\alpha \gamma \times I_{laser} + \beta V \times I_{laser}$

Fluorescence of nanolocalized source (single molecules) Parasitic luminescence of surrounding media

V – effective excitation volume

dx.doi.org/10.1021/ac3027178 | Anal. Chem. 2013, 85, 1258–1263

Why spectral width of fluorescence is important?

Photodegradation of dye molecules

3. Detection of single molecules and virions

Single-Molecules-Counting Method with "unfocused" laser light

Detection of Troponin molecules

Optical setup

Melentiev et al. ACS Sensors 5, 3576–3583 (2020)

Single Troponin molecules visualization

P.N. Melentiev et al. ACS Sensors 5, 3576–3583 (2020)

Optical imaging of cTnT molecules

 Table I Summary of commercially available troponin detection technologies

Commercially available troponin assays	99th percentile cut-off (ng/mL)	Time	Cost (USD)	Volume
CTnT	(0)			
Elecsys, third generation (Roche, Basel, Switzerland)	0.01	60 min	31,148	150 μL
cTnl				
i-STAT (Abbott Point of Care, Princeton, NJ, USA)	0.08	10 min	420	17 μL
ACS:180 (Bayer, Leverkusen, Germany)	0.07	24 h	1,200	10 mL
Dimension Vista (Siemens, Munich, Germany)	0.05	10 min	278,000	20 µL
Architect (Abbott, Princeton, NJ, USA)	0.04	10 min	19,000	62 µL

Abbreviations: CTnT, cardiac troponin T; cTnI, cardiac troponin I.

S. Upasham, A. Tanak, S. Prasad, Advanced Health Care Technologies 2018:4 1–13

Detection of SARS-CoV-2 virions

Two strategies for SARS-CoV-2 single virions detection

Viral particle

Pseudo-viral particle (not harmful)

Making samples for SARS-CoV-2 single virions detection

D. Kudryavtsev et al. Nature Photonics, submitting (2022)

SARS-CoV-2 virions detection with use of hubrid plasmonic nanoparticles (nanoscale mesoscopic systems)

P. Melentiev et al. Nature Nanotechnology, submitting (2022)

Viral particles vs aggregates of antibodies

 λ - antibody + • - fluorescent dye = 2^{-} - Marked antibody

SARS-CoV-2

Aggregate of antibodies

δх

- Energy transfer
- Fluorescence efficiency
- Kinetics of pumping to the triplet sublevel

(1) Total flux of photons

(2) Kinetics of photoluminescence degradation

Viral particles vs aggregates of antibodies

Detection of SARS-CoV-2 virions directly in a swab

D. Kudryavtsev et al. Nature Photonics, submitting (2022)

4. Quantum engineering of radiative properties of a nanoscale emitters of light

Outline

- We show that it is possible to manipulate by the emission rate of fluorescent molecules in such systems by carefully designing the energy levels of a specific system formed using a strongly coupled dye molecules in the shell and a plasmonic nanoparticle.