

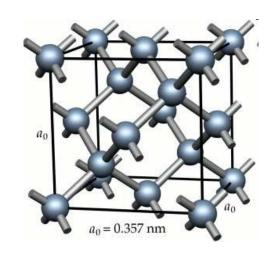
Кузьмин Н.Н.

Общие понятия о симметрии

Кристаллография — наука о кристаллах, их структуре, возникновении и свойствах

Кристалл — это

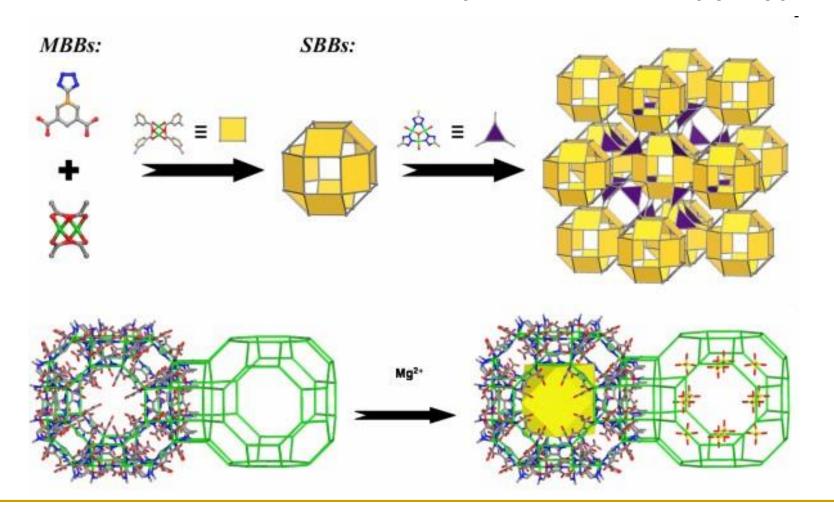
•термин произошел от греч. κρύσταλλος, что первоначально означало <u>лёд</u>, в дальнейшем — горный хрусталь и кристалл (в общем понимании)



Кристалл гематита Fe₂O₃

Кристалл спессартина Mn₃Al₂[SiO₄]₃

Кристалл — это

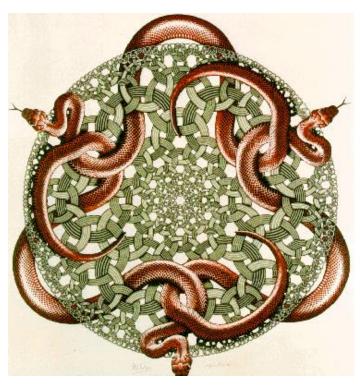

- ■твердое тело, способное в определенных условиях самоограняться
- ■твердое тело, в котором атомы расположены закономерно, образуя трехмерно-периодическую пространственную укладку – кристаллическую решетку

Кристаллохимия — наука о кристаллических структурах и их связи с природой вещества

Кристаллохимия изучает связь между кристаллическими структурами (расположением атомов) веществ, химическим составом, характером химических связей и свойствами веществ

Примеры структур

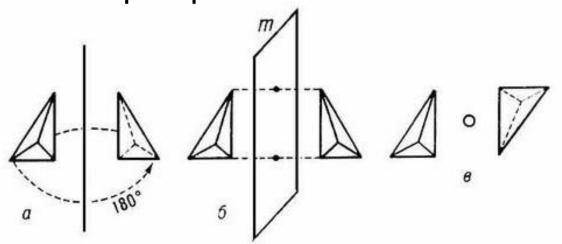
Цеолито-подобные металлоорганические структуры

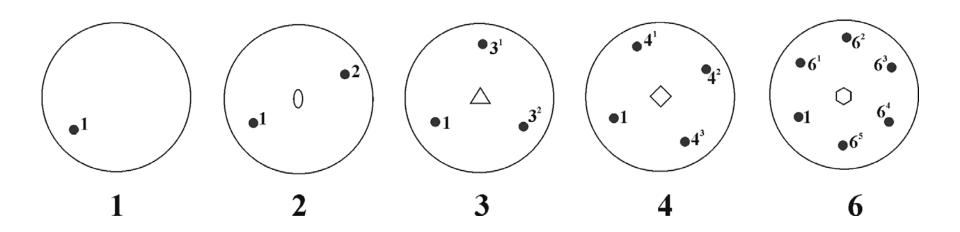


 $In_{48}(C_5N_2O_4H_2)_{96}(C_7N_3H_{15})_{24}(DMF)_{36}(H_2O)_{192}$

Симметрия кристаллов

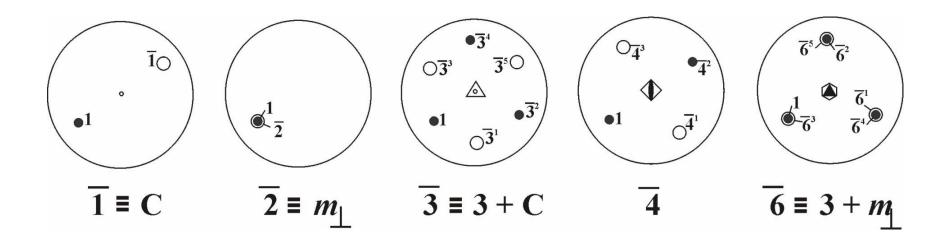
Симметрия — свойство геометрической фигуры при определенном преобразовании пространства приобретать новое положение, неотличимое от исходного (*самосовмещаться*).





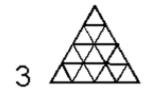
Симметрия кристаллов

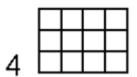
Операция симметрии — отражение геометрической фигуры самой в себя при некотором изометрическом преобразовании пространства


Элемент симметрии — геометрическое место точек, переходящее в себя при симметрическом преобразовании пространства

Простые оси симметрии – поворот на угол 360°/n

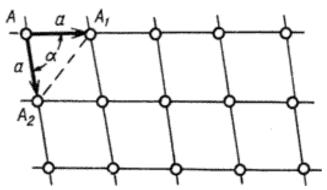
n – порядок оси симметрии


Инверсионные оси симметрии – поворот на угол 360°/n плюс отражение в точке инверсии


n – порядок оси симметрии

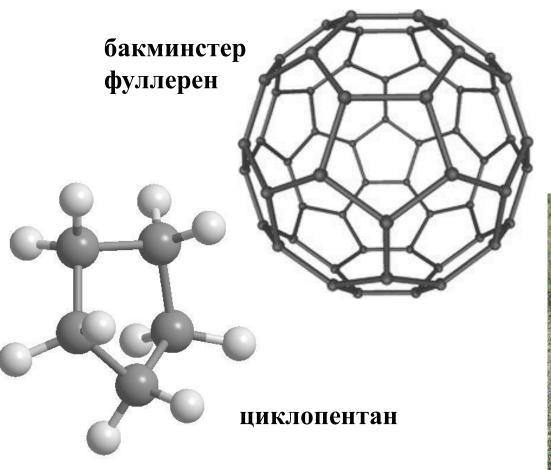
Отсутствие осей симметрии 5 порядка и выше 6:

1. Невозможность заполнения пространства правильными *n* – угольниками, где *n* = 5, 7, 8...



Отсутствие осей симметрии 5 порядка и выше 6:

2. Рассмотрение возможных порядков осей, перпендикулярных узловой сетке:


При минимальном расстоянии между узлами одного ряда в треугольнике AA_1A_2 сторона $A_1A_2 \ge a$, следовательно $\alpha \ge 60^\circ$ (если узел взят на оси перпендикулярной узловой сетке, то ее порядок не может быть больше 6)

Любая параллелограмматическая сетка обладает L_2 , перпендикулярной слою. При наличии оси нечетного порядка их взаимодействие будет давать ось с удвоенным порядком L_n+1 $L_2=L_{2(n+1)}$:

 $L_1 \rightarrow L_2$, $L_3 \rightarrow L_6$, а $L_5 \rightarrow L_{10}$, что противоречит предыдущему условию

Наличие запрещенных элементов симметрии:

Сингония (от греч. $\sigma \dot{v} v$ - «согласно, вместе», и $\gamma \omega v \dot{\iota} \alpha$ - «угол») - одно из подразделений кристаллов по признаку формы их элементарной ячейки. Применяется в кристаллографии для категоризации кристаллов.

Категория	Сингония	Признак			
Низшая	Триклинная	Ось 1-го порядка			
	Моноклинная	Одна ось 2-го порядка			
	Ромбическая	Три ⊥ оси 2-го порядка			
Средняя	Тригональная	Одна ось 3-го порядка			
	Тетрагональная	Одна ось 4-го порядка			
	Гексагональная	Одна ось 6-го порядка			
Высшая	Кубическая	Четыре оси 3-го порядка			

Точечные группы

32 вида симметрии

Триклинная	1	-1		Группы симметрии, операции которых					
Моноклинная	2	m	2/m	оставляют хотя бы одну точку					
Ромбическая	222	mm2	mmm	про	стран	ства н	іа месте		
Тетрагональная	4	-4	4/m	422	4mm	-42 <i>m</i>	4/mmm		
Тригональная	3	-3	32	3 <i>m</i>	-3 <i>m</i>				
Гексагональная	6	-6	6/ <i>m</i>	622	6 <i>mm</i>	-62 <i>m</i>	6/ <i>mmm</i>		
Кубическая	23	<i>m</i> -3	432	-43 <i>m</i>	<i>m</i> -3 <i>m</i>				

Центросимметричные группы

Точечные группы

Если говорить о распространенности минералов различных сингоний в природе, то можно отметить следующее. На настоящий момент в природе известно около 5000 минералов. Среди них резко преобладают кристаллы низшей и средней категорий. Лидер - моноклинная сингония, намного опережая ромбическую по распространенности.

32 КЛАССА СИММЕТРИИ КРИСТАЛЛОВ

Категория	низшая <i>a≠b≠c</i>			средняя <i>a=b≠c</i>			высшая a=b=c	
Сингония	Триклициая α≠β≠γ	моноклиния α=β=90 γ≠90°		теграгопальная α=β=γ=90°	Гексагональная $ \begin{array}{c} \text{Гексагональная} \\ \alpha = \beta = 90^{\circ} \\ \gamma = 120^{\circ} \end{array} $ Тригональная		Кубическая α=β=γ=90°	
<i>C</i> ,	L, C ₁	L, (2)),	L, C ₄	L, C ₃	L _s C ₆ 6 nupasudu (vesc.)		
C_{ni}	C C _i	Р () таковно финфр);	£, C4i	£, C3;			
C_{nv}			1.2P C2v	LAP Слу 4mm запрамода (догнения)	L ₃ 3P C _{3y} 3m nupasuda (du-mpu.)	L ₆ 6P C _{6v} 6mm rapasuda (hu-vesc)		
C_{nh}		L ₂ PC (C)	L,PC C4h 4/m inpaule (memp.)	$\begin{array}{c} L_{b} = C_{3h} = C_{6i} \\ = C_{6i} \\ \hline \delta \\ = C_{6i} \end{array}$	L _s PC C _{6h}		
D_n			3L, D ₂	L ₄ 4L ₂ D ₄ 422 hipaneuropy (newsyn)	L ₃ L ₂ D ₃	L ₆ 6L ₂ D ₆	3L ₁ 4L ₃ T	3L/AL/6L, O
Обозначения Симвах Симвох Браве Швенфлиса Графическое изобрамение класса симметрии Мемсдународный Форма общего положения			£,2L,2P D _{2d}	L3L3PC D3d		3L,4L,6P T _d		
		20	3L ₂ SPC D _{2h}	LALSPC du numa da numa	D _{3h} L _{3L,4P} 6m2 anpaunba (du-appu)	L ₆ 6L,7PC 6n L ₆ 6L,7PC 6n nupassed 6/mmm (ou-vex.)	3L4L3PC	3LAL6L9PC

Символы Германа - Могена

Были предложены немецким кристаллографом Карлом Германом в 1928 г. и модифицированы французским минералогом Шарлем-Виктором Могеном в 1931 г. Также называются международными символами, поскольку используются в Интернациональных Таблицах по Кристаллографии, начиная с их первого издания в 1935 г.

Обозначаются симметрически неэквивалентные элементы симметрии

Поворотные оси симметрии обозначают арабскими цифрами — 1, 2, 3, 4 и 6.

Инверсионные оси обозначают арабскими цифрами с чёрточкой сверху — $\overline{1}$ $\overline{3}$ $\overline{4}$ $\overline{6}$, при этом ось $\overline{2}$, которая является зеркальной плоскостью симметрии, обозначается символом m (от англ. mirror - зеркало)

Символы Шенфлиса

 $\mathbf{C_n}$ — группы с единственным особым направлением, представленным поворотной осью симметрии $\mathbf{C_{ni}}$ — группы с единственной инверсионной осью симметрии.

 C_v (от нем. vertical — вертикальный) — для плоскостей, расположенных вдоль единственной или главной оси симметрии, которая всегда выбирается вертикальной.

C_h (от нем. horisontal — горизонтальный) — для плоскости, перпендикулярной к главной оси симметрии. **S** (от нем. spiegel — зеркало) — для плоскости неопределенной ориентации, то есть не фиксированной ввиду отсутствия в группе иных элементов симметрии

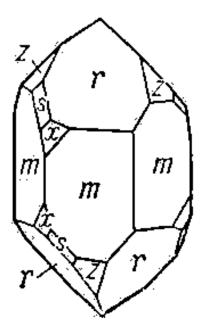
Символы Шенфлиса

 $\mathbf{O,T}$ — группы симметрии с несколькими осями высшего порядка — группы кубической сингонии — обозначаются буквой О в случае, если они содержат полный набор осей симметрии, или буквой Т — если в группе отсутствуют диагональные оси симметрии. $\mathbf{D_n}$ — является группой $\mathbf{C_n}$ с добавочной осью

Р_п — является группой С_п с добавочной осью симметрии второго порядка, перпендикулярной исходной оси.

 \mathbf{D}_{nh} также имеет горизонтальную плоскость симметрии.

 $\mathbf{D}_{\mathbf{nv}}$ также имеет вертикальную плоскость симметрии.

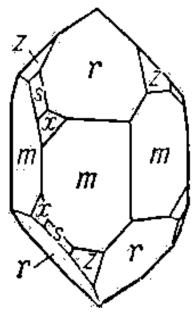

n может равнятся 1,2,3,4,6.

Простая форма — совокупность граней, размноженных элементами симметрии

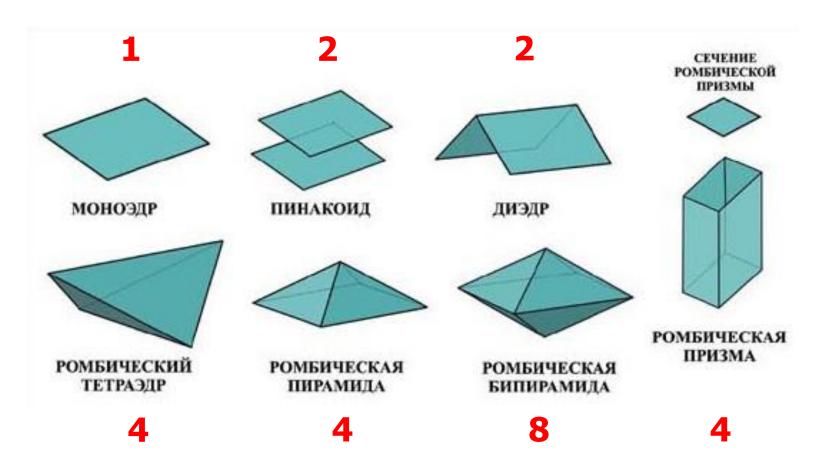
Всего известно 47 геометрически различных простых форм

Если в кристалле есть одинаковые грани (одинаковые по форме, размеру,...), то они должны быть связаны элементами симметрии.

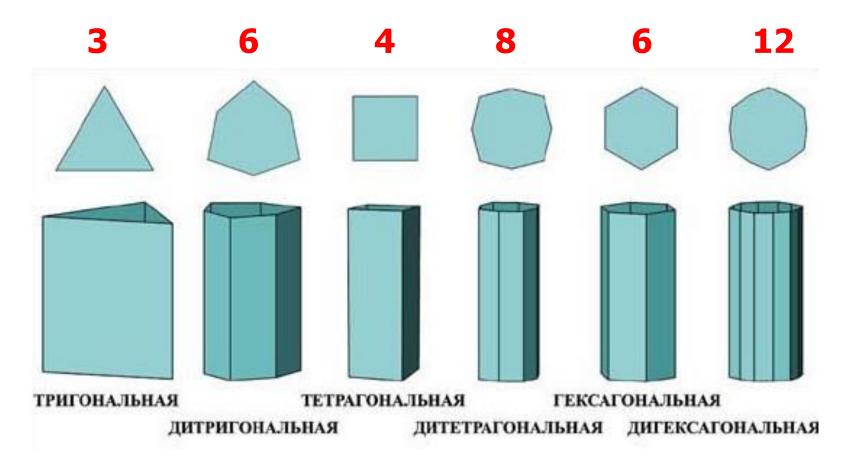
И наоборот, если есть элементы симметрии, то они должны связывать (объединять) какие-нибудь грани.



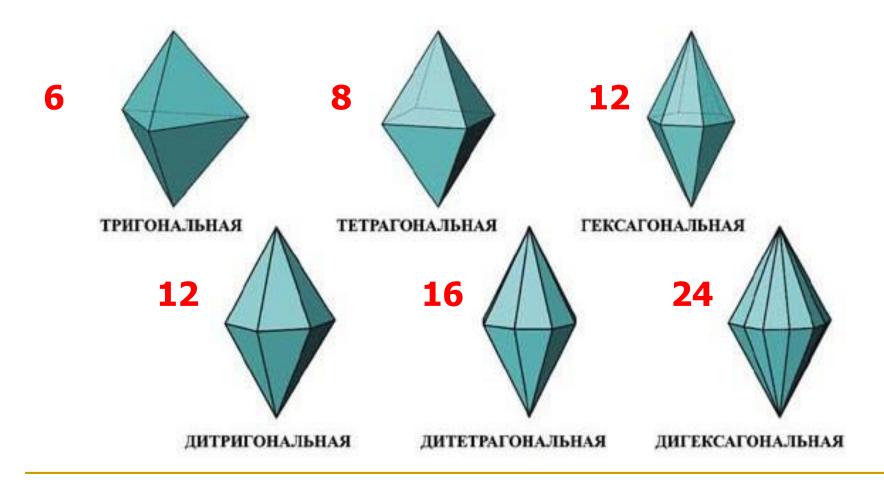
Простая форма — совокупность граней, размноженных элементами симметрии


Всего известно 47 геометрически различных простых форм

Для каждой категории есть свой набор не повторяющихся простых форм.

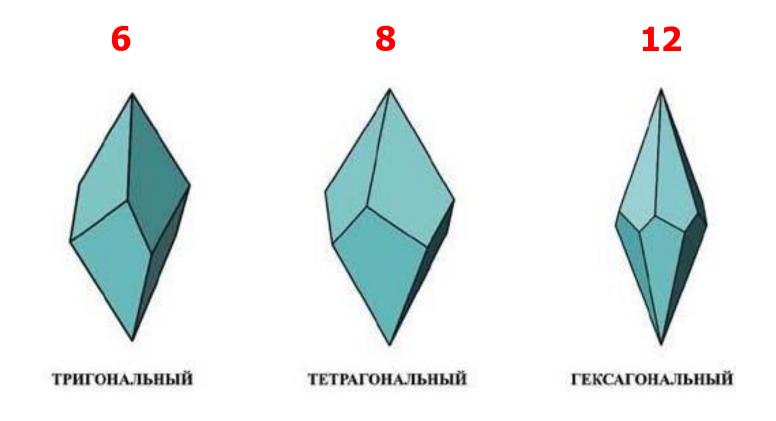

Есть лишь не значительное пересечение в низшей и средней категориях.

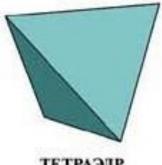
Низшая категория


Средняя категория. Призмы

Средняя категория. Пирамиды

6 ТРИГОНАЛЬНАЯ ТЕТРАГОНАЛЬНАЯ ГЕКСАГОНАЛЬНАЯ 8 **12** 6 ДИТРИГОНАЛЬНАЯ ДИГЕКСАГОНАЛЬНАЯ ДИТЕТРАГОНАЛЬНАЯ


Средняя категория. Дипирамиды

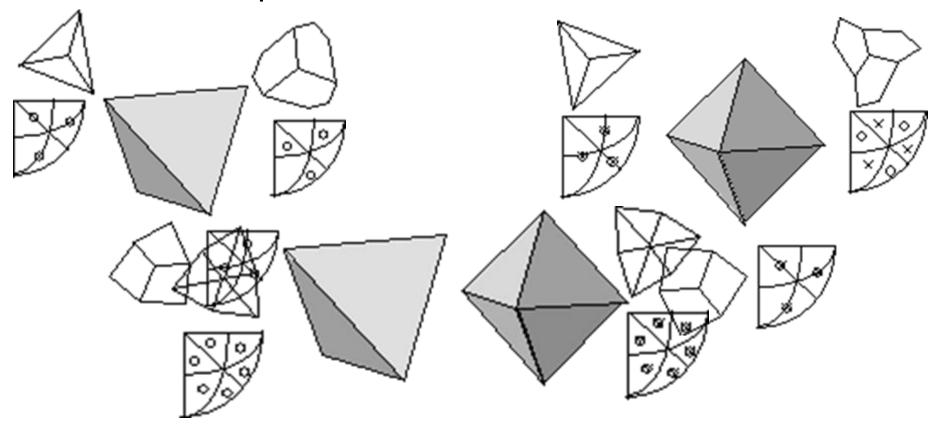

Средняя категория. Тетраэдры и скаленоэдры

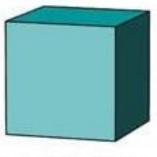
Средняя категория. Трапецоэдры

Высшая категория. Производные тетраэдра

ТЕТРАЭДР

Высшая категория. Производные октаэдра





Высшая категория.

Высшая категория. Производные гексаэдра

ГЕКСАЭДР (КУБ)

Частные - грани которых параллельны, перпендикулярны или симметрично пересекают элементы симметрии

Общие - грани которых произвольно пересекают все

m

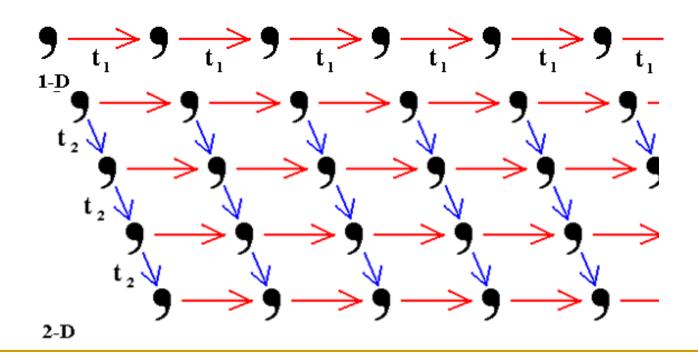
т

элементы симметрии

Для каждого вида симметрии есть только одна общая простая форма.

Для ее определения, можно поставить на проекции элементов симметрии «грань» в произвольном положении и подействовать на нее всеми элементами симметрии.

Элементы симметрии кристаллических структур


Кристаллические многогранники рассматриваются в рамках «закрытых» элементов симметрии (элементы симметрии непериодических структур)

Но кристаллы состоят из атомов, закономерное распределение в пространстве (объеме) которых также описывается теорией симметрии

Для их описания применяют «открытые» элементы симметрии – соответствующие им симметрические операции содержат в себе поступательное движение

Элементы симметрии кристаллических структур

Трансляция – симметрическая операция, представляющая собой поступательное перемещение на величину некоторого вектора *t*.

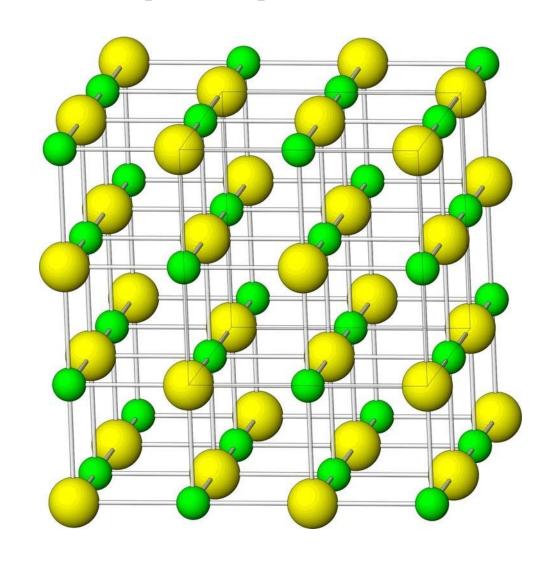
Элементы симметрии кристаллических структур

Сингония Тип решетки	Три- клинная	Моно- клинная	Ромби- ческая	Тетраго- нальная	Триго- нальная (ромбоэд- рическая)	Гексаго- нальная	Куби- ческая
Примитивный							
Базоцентри- рованный							
Объемноцен- трированный							
Гранецентри- рованный							

Элементы симметрии кристаллических структур

Оси симметрии, перпендикулярные плоскости чертежа

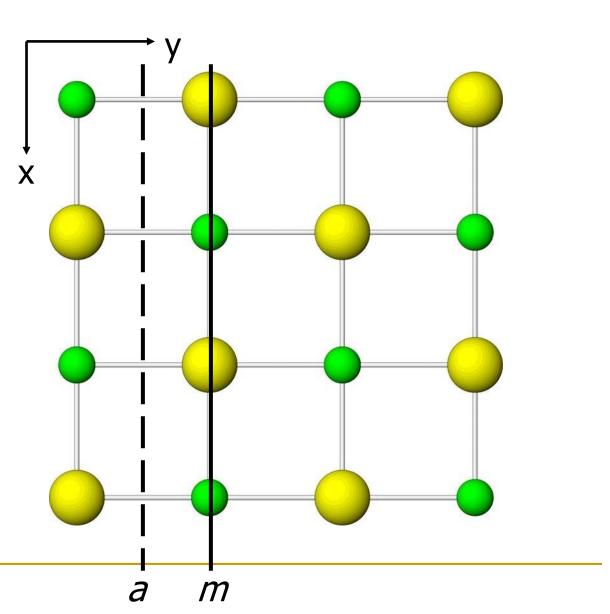
Система обозначений осей симметрии


Оси симметрии, параллельные плоскости чертежа

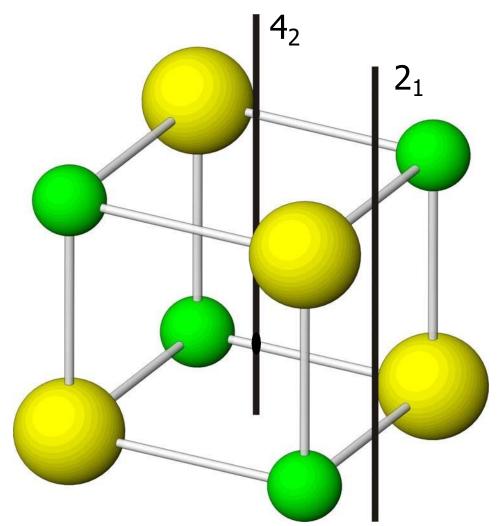
Оси симметрии, расположенные косо по отношению к плоскости чертежа

Элементы симметрии кристаллических

структур


Структура NaCl

Элементы симметрии кристаллических


структур

Структура NaCl

Элементы симметрии кристаллических структур

Структура NaCl

Пространственные группы

Пространственная группа — совокупность преобразований симметрии кристаллической решетки, совмещающих эту решетку саму с собой

Всего существует 230 различных пространственных групп симметрии

32 точечные группы

230 пространственных групп

Триклинная сингония:

- 1.Тип решетки Браве (всегда Р-ячейка при стандартной установке)
- 2. *P*1 или *P*-1

Моноклинная сингония:

- 1. Тип решетки Браве
- 2.Ось 2-го порядка или перпендикулярная ей плоскость

Примеры: $P2_1/c$, P2, Cc

Ромбическая сингония:

- 1. Тип решетки Браве
- 2.Ось симметрии, совпадающая с первой кристаллографической осью (x) и перпендикулярная ей плоскость
- 3.Ось симметрии, совпадающая со второй кристаллографической осью (у) и перпендикулярная ей плоскость
- 4.Ось симметрии, совпадающая с третей кристаллографической осью (z) и перпендикулярная ей плоскость

Примеры: *Ibam*, *P*222₁, *Cma*2

Тригональная и гексагональная сингония:

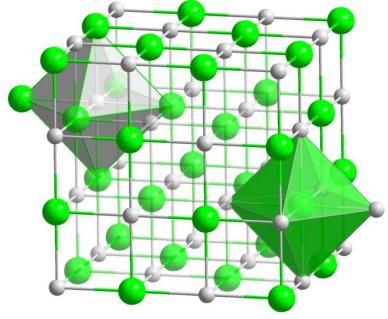
- 1. Тип решетки Браве
- 2.Направление [0001] ось симметрии, совпадающая с z и перпендикулярная ему плоскость
- 3. Большая диагональ: плоскость, проходящая вдоль большой диагонали и (или) перпендикулярная ей ось
- 4. Малая диагональ: плоскость, проходящая вдоль малой диагонали и (или) перпендикулярная ей ось

Примеры: $P6_3/mc$, $P6_3/mcm$, $P6_322_1$

Тетрагональная сингония:

- 1. Тип решетки Браве
- 2.Направление [001] ось симметрии, совпадающая с z и перпендикулярная ему плоскость
- 3. Направление [100] = [010] и перпендикулярная ему плоскость
- 4. Диагональное направление [110] и перпендикулярная ему плоскость Примеры: $I4_1/a$, P-42m, $I4_1$ /amd

Кубическая сингония:


- 1. Тип решетки Браве
- 2. Координатное направление [100] = [010] = [001] и перпендикулярная ему плоскость
- 3. Направление [111] ось 3-го порядка
- 4. Диагональное направление [110] и перпендикулярная ему плоскость Примеры: Fm-3m, F-43m, Pn-3m, Pa-3, P2₁3

Координационные числа (КЧ)

Координационное число — это число ближайших к данному атому соседних атомов (лиганды) в структуре кристалла.

Причем в моноатомной структуре учитываются атомы того же сорта, что и центральный, а в полиатомной — обязательно другого сорта.

NaCl KY(Na) = 6 KY(Cl) = 6

Координационные полиэдры (КП)

Координационный полиэдр — геометрия расположения лигандов вокруг центрального атома.

Некоторые координационные полиэдры, встречающиеся в кристаллических структурах:

```
a — гантель (КЧ = 2); \delta — треугольник (КЧ = 3); \epsilon — квадрат (КЧ = 4)
```

г — тетраэдр (КЧ = 4); *д* — тригоиальная призма (КЧ = 6);

e — октаэдр (KЧ = 6); ж — куб (KЧ = 8); з — томсоновский куб (KЧ = 8)

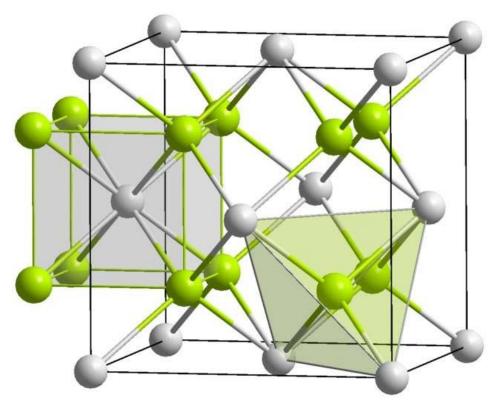
u — архимедов кубооктаэдр (КЧ = 12)

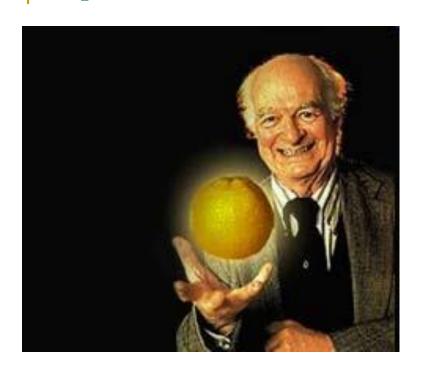
к — гексагональный аналог кубооктаэдра (КЧ = 12).

а б в г д е

ж з и к

Число формульных единиц (Z)

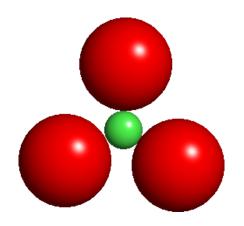

Z – количество элементарных формул соединения в одной ячейке.

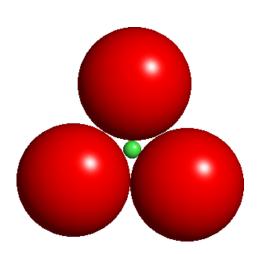

Для флюорита:

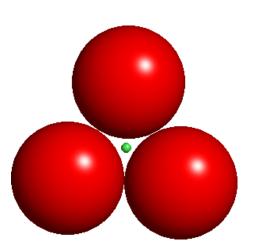
Ca: $1/8*8 + \frac{1}{2}*6 =$

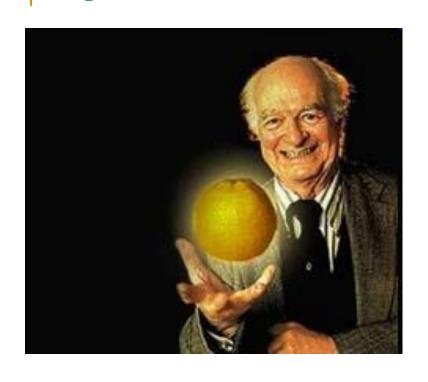
4 F: 1*8 = 8

 $Ca_4F_8 = 4 (CaF_2) - Z = 4$


Лайнус Карл Полинг (1901-1994)


1-ое правило


расстояние катион - анион в координационном полиэдре определяется суммой ионных радиусов, а КЧ - их отношением

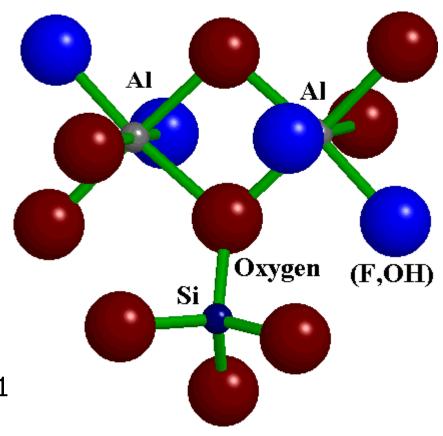

в плотнейших упаковках крупные $(R_k/R_a > 0.414)$ катионы раполагаются в октаэдрических пустотах, меньшие катионы занимают тераэдрические позиции $(R_k/R_a = 0.414 - 0.215)$

1-ое правило

2-ое правило

сумма валентных усилий катионов первой координационной сферы, сходящихся на анионах, должна быть численно равна или почти равна валентности аниона

Лайнус Карл Полинг (1901-1994)


в стабильной структуре должен соблюдаться локальный баланс валентностей

Сила связи $S = Z_{\text{кат}} / K$

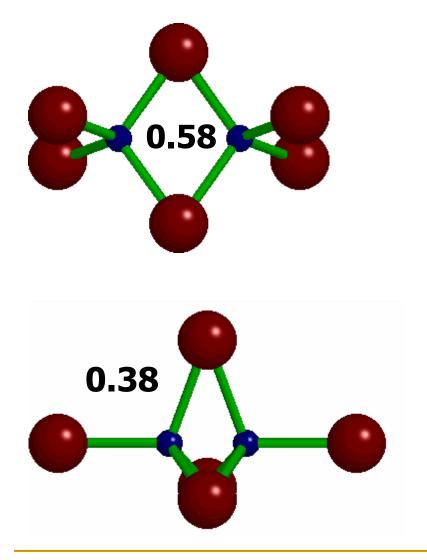
$$r(Si)/r(O) = 0.3 \rightarrow KY_{Si} = 4$$

 $r(AI)/r(O) = 0.43 \rightarrow KY_{AI} = 6$

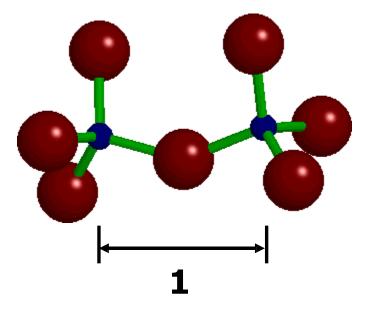
S(AI-O) = 3/6=1/2, S(Si-O) = 4/4=1 каждый O связан с 2AI+1Si.

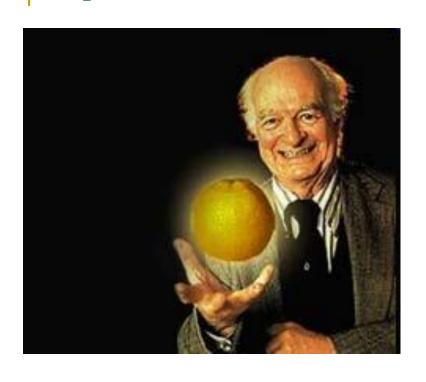
2-ое правило

Топаз - $Al_2SiO_4(F,OH)_2$



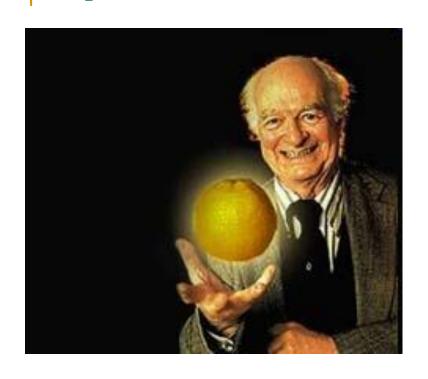
Лайнус Карл Полинг (1901-1994)


3-е правило


устойчивость структуры снижается при наличии общих ребер и особенно граней координационных полиэдров

Чем больше общих вершин у полиэдров — тем ближе друг к другу располагаются катионы. Это дестабилизирует структуру, так как приводит к катион-катионному отталкиванию

3-е правило

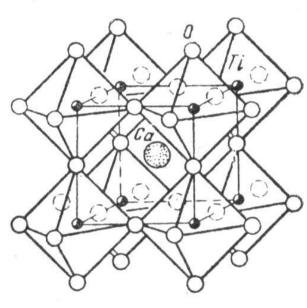


4-е правило

высоковалентные и небольшие по размеру катионы стремятся не иметь общих анионов

Обобщение 3-го правила

Лайнус Карл Полинг (1901-1994)



5-е правило

число разных по конструкции структурных фрагментов (координационных полиэдров) стремится к минимуму

Лайнус Карл Полинг (1901-1994)

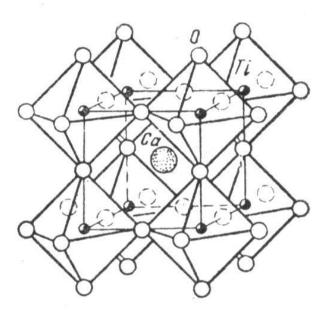
Фактор толерантности

Структура имеет кубическую или псевдокубическую ячейку

Ионы А расположены в ее вершинах, B - B центре, а X - B центре граней; KY(A) = 12 (кубооктаэдр), KY(B) = 6 (октаэдр), KY(X) = 6 (4A+2B)

Для куба, А-Х в √ 2 раза больше, чем В-Х, т. е.

Перовскит CaTiO₃


$$r_A + r_X = \sqrt{2}(r_B + r_X)$$

Поскольку большинство перовскитов некубические, то в общем виде

 $r_A + r_X = t\sqrt{2}(r_B + r_X)$

где t - фактор толерантности (приспособляемости).

Фактор толерантности

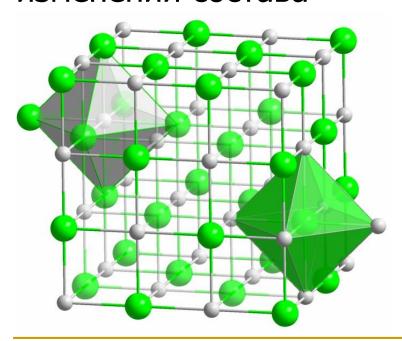
Если использовать стандартные ионные радиусы для KY = 6, то t для реальных структур находится в пределах 0,8-1,0. Для истинно кубического представителя перовскитов таусонита SrTiO₃ t находится как раз в середине этого интервала (0,9). Если учесть, что расстояние А-Х кубооктаэдре примерно 6% на больше, чем сумма стандартных радиусов, то фактор t приблизится к 1 для строго кубических перов- скитов ($SrTiO_3$, $KNiF_3$,

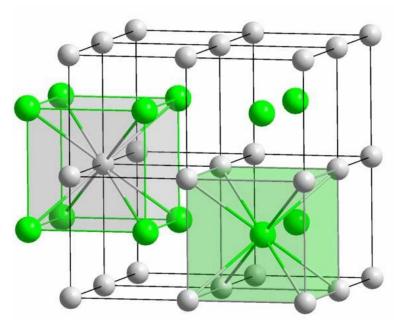
Перовскит $CaTiO_3$ LaAlO₃, NaTaO₃ и др.).

Когда фактор толерантности t выходит за указанные пределы, структура перовскита перестает существовать и заменяется другими структурными типами соединений ABX_3 .

Рассмотрим смену структурных типов в ряду *ильменит* \rightarrow *перовскит* \rightarrow *кальцит* \rightarrow *арагонит* \rightarrow *RbNO* $_3$ по мере увеличения фактора толерантности t.

Фактор толерантности


Минерал	t	Структурный тип; КЧ	
MgTiO ₃ <i>гейкилит</i> FeTiO ₃ , <i>ильменит</i> MnTiO ₃ <i>пирофанит</i>	0,76 0,78 0,80	<i>ильменит</i> 6:6:4	
CaTiO ₃ , перовскит SrTiO ₃ таусонит BaTiO ₃	0,86 0,91 0,99	перовскит 12:6:6	
MgCO ₃ <i>магнезит</i> MnCO ₃ <i>родохрозит</i> CaCO ₃ <i>кальцит</i>	1,20 1,26 1,35	<i>кальцит</i> 6:3:3	
СаСО ₃ арагонит SrCO ₃ стронцианит BaCO ₃	1,35 1,47 1,56	<i>арагонит</i> 9:3:4	
RbNO ₃ CsNO ₃	1,65 1,75	<i>RbNO₃</i> 12:3:5	


Если использовать стандартные ионные радиусы для KY = 6, то t для реальных структур находится в пределах 0.8-1.0

Морфотропия

От греческого μορφή — «форма» и τροπή — «поворот»

Изменение свойств, в том числе и структуры, в однотипных по стехиометрии соединениях при резком изменении состава

При увеличении R катиона: Li, Na, K, Rb, Cs КЧ меняется с 6 на 8, а ячейка с F — на Р

От греческого πολ ν- — «много», и μορφή — «форма»

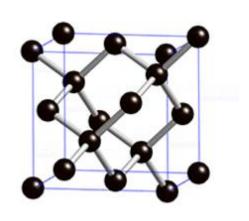
Способность вещества существовать в различных кристаллических структурах

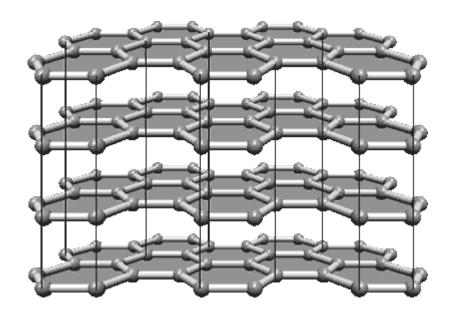
которые называются *полиморфными* модификациями (их принято обозначать греческими буквами α , β , γ и т. д.)

Открыт в 1798 году М. Клапротом на примере карбоната кальция (CaCO₃), для которого были обнаружены две модификации кальцит и арагонит.

Мартин Генрих Клапрот 1743 - 1817

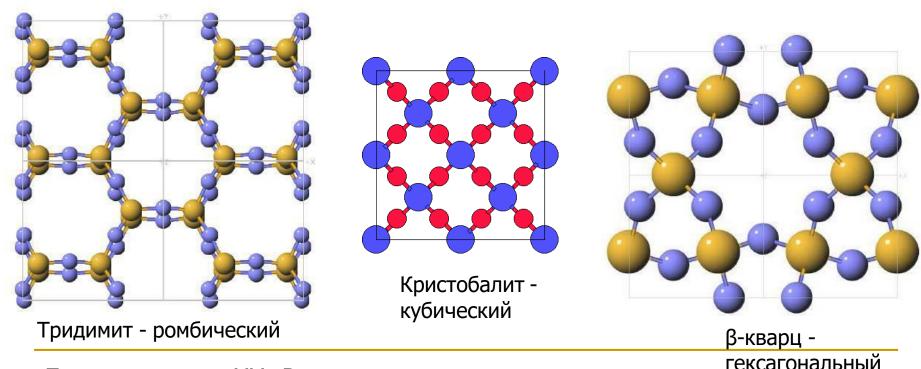
Полиморфизм объясняется тем, что одни и те же атомы вещества могут образовывать различные устойчивые кристаллические решётки, соответствующие минимумам на поверхности энергии Гиббса.


$$G = U + PV - TS$$
,

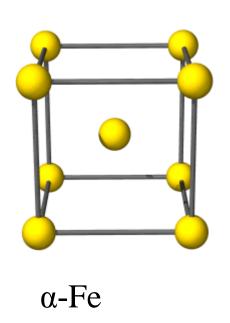

U — внутренняя энергия, Р — давление, V — объем, Т — абсолютная температура, S - энтропия

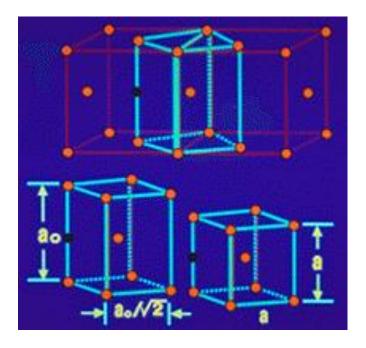
При повышении температуры более прочная кристаллическая решетка низкотемпературной модификации может характеризоваться меньшей энтропией за счёт того, что она менее восприимчива к возбуждению тепловых колебаний, поэтому другая модификация, характеризующаяся более крутой зависимостью энергии Гиббса от температуры, становится более выгодной.

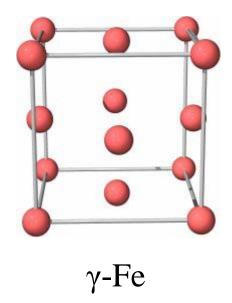
Типы полиморфизма:


1. Реконструкционный — полное изменение структры (распад до элементарных блоков: атомы, полиэдры)

Типы полиморфизма:

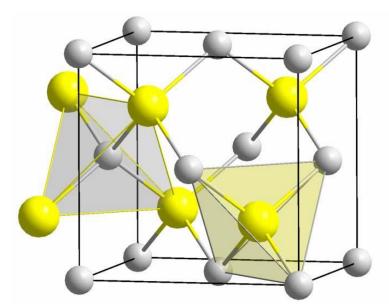

1. Реконструкционный — полное изменение структры (распад до элементарных блоков: атомы, полиэдры)



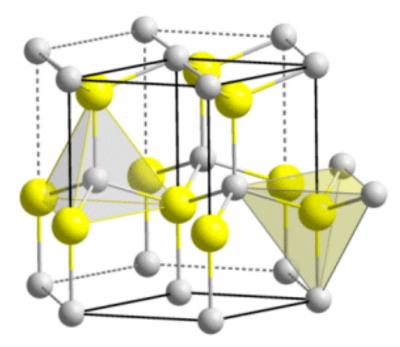

Без изменения КЧ. Распад «тетраэдров»

Типы полиморфизма:

2. Деформационный — сжатие / растяжение структуры



В рамках кубической F-ячейки выбирается тетрагональная I по {110}. Чтобы прийти к кубической — надо деформировать по (001). И наоборот


Типы полиморфизма:

3. Сдвиговый – смещение фрагментов структры

(слоев)


ZnS – сфалерит (кубическая)

ZnS – вюртцит (гексагональная)

Сдвиг третьего слоя кубической плотнейшей упаковки, так, чтобы встал над первым (ГПУ). И наоборот

Полиморфизм простых веществ называют аллотропией (от греч. $\alpha\lambda\lambda\circ\varsigma$ — «другой», $\tau\rho\circ\pi\circ\varsigma$ — «поворот, свойство»)

