

Антиферромагнитная спинтроника: от модели маятника до нейроморфной динамики и детектирования ТГц

1,2Ансар Ризаевич Сафин

кандидат технических наук, доцент ¹Институт радиотехники и электроники им. В.А. Котельникова РАН ²Национальный исследовательский университет «МЭИ» arsafin@gmail.com

А.И. Кирилюк

С.А. Никитов

Институт радиотехники и электроники им. В.А. Котельникова РАН *Москва, Россия*

Лаборатории FELIX университета Неймегена *Неймеген, Нидерланды*

СОДЕРЖАНИЕ

- Основы спинтроники (на примере спинтронных осцилляторов)
- Эффекты ГМС/ТМС, эффекты переноса спина, спиновый эффект Холла
- СТНО и СХНО СВЧ диапазона: мощность и ширина спектра
- > Перспективы спинтронных осцилляторов и детекторов
- Антиферромагнитная спинтроника
- > Перспективы применения АФМ для ТГц электроники
- > Спинтронные АФМ осцилляторы и детекторы
- Э Внешняя синхронизация АФМ СО
- Взаимная синхронизация АФМ СО
- > Нейроморфные сети СО

ЭЛЕКТРОНИКА vs СПИНТРОНИКА

Электроника — Заряд

Основана на переносе <u>заряда</u> носителей электрического тока.

Спинтроника — Спин

Основана на переносе собственного магнитного момента - <u>спина</u> носителей электрического тока.

В немагнитном проводнике электроны рассеиваются независимо от направления спина. От среднего количества рассеяния электронов зависит электрическое сопротивление проводника.

В ферромагнитном проводнике электроны рассеиваются по-разному в зависимости от направления спина электронов. Например, электроны со спином вверх рассеиваются сильнее, чем со спином вниз.

ГДЕ МЫ ВСТРЕЧАЕМ СПИНТРОНИКУ?

Во всех персональных компьютерах!

 Гигантское магнетосопротивление (ГМС - GMR)
 Эффект переноса спина (spin transfer torque)

плотность записи информации

ГИГАНТСКОЕ МАГНИТОСОПРОТИВЛЕНИЕ

Ферромагнитные слои с противоположными направлениями намагниченностей слоев останавливают электроны обоих направлений спина.

ЭФФЕКТ ПЕРЕНОСА СПИНА

Уравнение Ландау-Лифшица-Гильберта (для намагниченности свободного слоя) $\frac{d\mathbf{M}}{dt} = \left[\gamma \left[\mathbf{H}_{eff} \times \mathbf{M} \right] + \left[\frac{\alpha}{M_0} \left[\mathbf{M} \times \frac{d\mathbf{M}}{dt} \right] + \left[\frac{a_I}{M_0} \left[\mathbf{M} \times \left[\mathbf{M} \times \mathbf{p} \right] \right] \right] \right]$ <u>прецессия</u> затухание <u>Перенос крутильного</u> момента (spin torque)

СПИН-ТРАНСФЕРНЫЕ НАНООСЦИЛЛЯТОРЫ

конструкции стно

Рис.1. Микрофотография СТНО

Важная особенность СТНО: колебательная система, активный элемент и управитель частоты находятся в одном блоке!

Рис.2. Конструкция СТНО: наностолб (а) и наноконтакт (б)

слоев простейших СТНО

СПИНОВЫЙ ЭФФЕКТ ХОЛЛА И СПИНОВАЯ НАКАЧКА

АС и DC сигналы за счет обратного спинового эффекта Холла Wei, D., et al., 2014, Nat. Commun. 5, 3768.

Эффект возникает из-за анизотропии рассеяния электронов с разными направлениями спинов на примесях немагнитного металла вследствие спинорбитального взаимодействия.

Обратный спиновый эффект Холла. При пропускании спин-поляризованного тока регистрируют напряжение ~10 нВ.

Дьяконов М.И., Перель В.И. 1971. Письма в ЖЭТФ. 13(11). С. 657-660.

ОСЦИЛЛЯТОРЫ НА ОСНОВЕ СПИНОВОГО ЭФФЕКТА ХОЛЛА

Рис.1. Конструкция СХНО, управляемого током

колебаний от постоянного тока

M. Dvornik, A. A. Awad, and J. Åkerman Phys. Rev. Appl. **9**, 014017 (2018)

МАТЕМАТИЧЕСКИЕ МОДЕЛИ СТНО

МОДЕЛЬ СЛАВИНА-ТИБЕРКЕВИЧА ДЛЯ АМПЛИТУДЫ СПИНОВОЙ ВОЛНЫ [1] И ЕЕ ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА [2]

[1]. A. Slavin, V. Tiberkevich. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. on Magnetism. Vol. 45, No.4, April 2009.

[2]. C. Boone, et al. Experimental test of analytical theory of spin-torque-oscillator dynamics. Phys. Rev. B 79, 140404, 2009.³

Математическая модель парциального СО и его динамические характеристики

Укороченные уравнения

(1)
$$\frac{dU}{dt} = \upsilon \cdot U \cdot \left(a - U^2\right).$$

(2)
$$\frac{d\varphi}{dt} = \omega_0 + N \cdot U^2.$$

Параметры модели

- υ физическая константа
- *а* фактор самовозбуждения (аналог *SRy*),
- ω_0 собственная частота СТНО (частота ФМР),
- *N* параметр неизохронности.

$$\frac{dU}{dt} = \upsilon \cdot U \cdot \left(a - U^2\right) a$$

уравнение для амплитуды автогенератора Ван-дер-Поля

 $rac{d \phi}{dt} = \omega_0 + N \cdot U^2$ уравнение автогенерато Дуффинга

уравнение для фазы автогенератора Ван-дер-Поля-Дуффинга

Стационарные амплитуда и фаза

 $\overline{U}^{2} = \frac{I - I_{KP}}{I + I_{KP}Q}, \qquad I - \text{ток, пропуск. через образец,} \\ \overline{\omega} = \omega_{0} + N \frac{I - I_{KP}}{I + I_{KP}Q}, \qquad Q - \text{критический ток, при котором стартуют колебания,} \\ Q - физический параметр$

Рис.2. Зависимости стационарной мощности (а) и частоты (б) от пропускаемого тока.

> P_{6blx} , _{MK}Bm

$$P_{Gblx} \approx \frac{I_0^2}{2} \frac{\Delta R^2 R_H}{\left(R_{AV} + R_H\right)^2} \cdot \frac{\varsigma \cdot Q_s' - 1}{\varsigma \cdot Q_s'' + Q}$$

ΔR, R0 – характеристичес кие сопротивления СТНО, Qs',Qs" – нормировочные коэффициенты

Гис.3. Зависимость выходной мощности от сопротивления нагрузки.

Актуальность

Необходимость в мощном, высокостабильном, миниатюрном и широко перестраиваемом источнике СВЧ-колебаний

(колебательная система, управитель частоты и активный элемент)

Достоинства СТНО

- Широкий диапазон перестройки частот – от 500 МГц до 50 ГГц.
- Миниатюрные размеры 20-200 нм.
- Возможность **перестройки** частоты колебаний генератора от приложенного тока.
- Совместимость с технологическим циклом производства КМОП.

ГЛАВНЫЙ НЕДОСТАТОК: низкая выходная <u>мощность</u> парциального СТНО – от 10 нВт до 1 мкВт.

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ

Chip-to-chip microwireless (Телекоммуникация чип-чип)

CTHO

НАНОРАЗМЕРНАЯ СВЧ ЭЛЕКТРОНИКА

АНТЕННАЯ РЕШЕТКА

Антенна

СПИНОВЫЕ ДИОДЫ

	Чувствительность без тока смещения	Чувствительность с током смещения	Шумовая эквивалентная мощность	Характерные планарные размеры	Пороговая мощность выпрямления
диод Шоттки	до 500 mV/mW	до 3,700 mV/mW	1.5-40 pW/Hz^0.5	порядка 1 мкм	15 μW
Спиновый диод	630 mV/mW	75,000 mV/mW	менее 0.1 pW/Hz^0.5	менее 100 нм	менее 20 nW

S. Miwa et al., Nature Materials, 13, 50–56 (2014)

СИНТЕЗАТОР ЧАСТОТ НА ОСНОВЕ ФАПЧ

ФД- фазовый дискриминатор ПГ –подстраиваемый генератор (СТНО) ЦУ- цепь управления e-I - преобразователь напряжение-ток

А.Сафин и др. Письма в ЖТФ, 2014, 2016. A. Safin et al., JAP, 2017

U. Ebels, et al. JAP, 2017

СТНО перестраивается током

ВНЕШНЯЯ СИНХРОНИЗАЦИЯ

Высокая эффективность – полоса синхронизма в 3 раза меньше опорной частоты

1000

500

750

source frequency (MHz)

signal of the external source

A.Dussaux, App. Phys. Lett **98**, 132506 (2011)

ОБЪЕДИНЕНИЕ ПАРЦИАЛЬНЫХ СТНО В АНСАМБЛИ

<u>Нелокальные</u> [1] (общим током)

1D-цепочка СТНО [2]

[1]. J.Grollier, et al. Phys.Rev.B, vol.73, p. 060409, 2006.[2].http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA520629

[3]. S.Kaka, et al. Nature, vol. 437, pp. 389–392, 2005 **б) Магнетодипольное взаим-ие [4]**

[4]. A.D. Belanovsky, et al. Phys. Rev. B 85, 100409(R), 2012

500 нм

ЛОКАЛЬНАЯ СВЯЗЬ СТНО (спиновые волны)

ЛОКАЛЬНАЯ СВЯЗЬ СТНО (МД-взаимодействие)

ЛОКАЛЬНАЯ СВЯЗЬ 2 СХНО (связь током и СВ)

A. A. Awad, et al. Nature Physics 13, 292 (2017)

ЛОКАЛЬНАЯ СВЯЗЬ БОЛЬШИХ МАССИВОВ СХНО

Линейка из 21 осциллятора

Решетка из 64 и 100 осцилляторов

M. Zahedinejad, et al. ArXiv:1812.09630v1.

ЛУЧШИЕ ПОКАЗАТЕЛИ ПО МОЩНОСТИ И ШИРИНЕ СПЕКТРАЛЬНОЙ ЛИНИИ ДЛЯ ОСЦИЛЛЯТОРОВ

МОТИВАЦИЯ

• Нехватка методов и устройств для приёма и генерации терагерцового излучения (THz gap problem)

АФМ & ТГЦ спинтроника

P. Wadley, et al. Science 2016

NIR probe

Nat.Phot. 2011

Резонансные частоты ФМ и АФМ

Ферромагнетики

Антиферромагнетики

Спиновый вращающий момент в ФМ

28

Полярность спинового тока параллельна стационарному направлению намагничивания:

- > Спиновый вращающий момент компенсирует затухание
- Приводит к прецессии намагниченности (STNO, SHNO)

Полярность спинового тока параллельна стационарному направлению намагничивания:

Спиновый момент компенсирует потери в одной подрешетке, но увеличивает затухание в другой

Cheng *et al* Phys. Rev. Lett. **116** 207602 (2016) Gomonay and Loktev Low. Temp. Phys. **40**, 17 (2014)

Спиновый вращающий момент в **АФМ** для поляризации параллельной <u>трудной</u> оси

 $H_{AFM} = H_{ex} \sin \Theta$ $\vec{\tau}_{ex}^1 = \vec{M}_1 \times \vec{H}_{AFM}$ Larmor precession: $\omega_L = \gamma H_{AFM}$

Уравнения движения

$$\begin{aligned} & \mathsf{Потери} \qquad \mathsf{Спиновый ток} \\ & d\mathbf{M}_1/dt = \gamma[\mathbf{H}_1 \times \mathbf{M}_1] + \underbrace{\frac{\alpha}{M_s}[\mathbf{M}_1 \times d\mathbf{M}_1/dt]}_{\frac{\alpha}{M_s}} + \underbrace{\frac{\tau}{M_s}[\mathbf{M}_1 \times [\mathbf{M}_1 \times [\mathbf{M}_1 \times \mathbf{p}]]}_{\frac{\alpha}{M_s}} \\ & d\mathbf{M}_2/dt = \gamma[\mathbf{H}_2 \times \mathbf{M}_2] + \underbrace{\frac{\alpha}{M_s}[\mathbf{M}_2 \times d\mathbf{M}_2/dt]}_{\frac{\alpha}{M_s}} + \underbrace{\frac{\tau}{M_s}[\mathbf{M}_2 \times [\mathbf{M}_2 \times \mathbf{p}]]}_{\frac{\sigma}{M_s}} \\ & \mathbf{H}_1 = \frac{1}{M_s} \begin{bmatrix} -\frac{1}{2}H_{\mathrm{ex}}\mathbf{M}_2 \\ -\frac{1}{2}H_{\mathrm{ex}}\mathbf{M}_2 \\ -\frac{1}{2}H_{\mathrm{ex}}\mathbf{M}_1 + H_h\mathbf{n}_h(\mathbf{n}_h \cdot \mathbf{M}_1) - H_e\mathbf{n}_e(\mathbf{n}_e \cdot \mathbf{M}_1) \\ & \mathbf{H}_2 = \frac{1}{M_s} \begin{bmatrix} -\frac{1}{2}H_{\mathrm{ex}}\mathbf{M}_1 \\ -\frac{1}{2}H_{\mathrm{ex}}\mathbf{M}_1 \\ + H_h\mathbf{n}_h(\mathbf{n}_h \cdot \mathbf{M}_2) - H_e\mathbf{n}_e(\mathbf{n}_e \cdot \mathbf{M}_2) \end{bmatrix} \\ & \mathbf{O} \\ & \mathbf{O} \\ \\ & \mathbf{O} \\ \\ \mathbf{O} \\ \\ \mathbf{O} \\ \\ \mathbf{M}_s \\ \mathbf{M$$

Ivanov Low Temp. Phys. 40, 91 (2014); Gomonay and Loktev Low. Temp. Phys. 40, 17 (2014)

Простейшая модель осциллятора

Простейшая модель осциллятора

$$\vec{l} = \frac{M_1 - M_2}{2M_s} = \vec{x}\cos\phi(t) + \vec{y}\sin\phi(t)$$

$$\frac{1}{\omega_{\rm ex}}\ddot{\phi} + \alpha\dot{\phi} + \frac{\omega_e}{2}\sin 2\phi = \sigma j$$

Решение:

$$\dot{\phi}(t) \approx \boxed{\frac{\omega_{\text{gen}}}{2}} + \boxed{\frac{\omega_e \omega_{\text{ex}}}{4\sqrt{\alpha^2 \omega_{\text{ex}}^2 + \omega_{\text{gen}}^2}} \cos \omega_{\text{gen}} t} \qquad \omega_{\text{gen}} = 2\frac{\sigma j}{\alpha}$$
$$\omega_{\text{gen}} = 2\omega_L$$
$$\text{DC} \qquad \text{AC (THz)}$$

Выходная частота и амплитуда

- AFM: NiO
- Effective damping $\alpha = 3.4 \cdot 10^{-3}$
- Thickness: 5 nm
- Radius: 10µm
- Pt thickness: 10 nm

Output power: 1.5 μW @ 0.1THz – 40nW @ 2 THz

Аналогия со сверхпроводниками

Изменение частоты АФМ резонанса с помощью магнитострикции

Внешняя синхронизация

Field-like Neel spin-orbit torque (NSOT):

 $\tau_{\scriptscriptstyle NSOT} \sim \mathbf{l} \times \mathbf{n} \times \mathbf{j}$

Was discovered in metallic AFMs with broken inversion symmetry

Narrow-band tunable THz detector in antiferromagnets via Néel spin-orbit torque and spin-transfer torque

O. Gomonay,^{1,2} T. Jungwirth,^{3,4} and J. Sinova^{1,3} ¹Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany

²National Technical University of Ukraine "KPI", 03056, Kyiv, Ukraine ³Institute of Physics ASCR, w.i., Cukrovarnicka 10, 162 53 Praha 6 Czech Republic ⁴School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

O. Gomonay, et al. PRB. 2018.

Anti-damping-like torque:

 $\tau_{STT} \sim j(\mathbf{l} \times \mathbf{p} \times \mathbf{l})$

p_{ac} along Hard-axis

 $\mathbf{p}_{ac} \mid \mid \mathbf{p}_{dc} \mid \mid \mathbf{H}_{HA}$

Easy plane

Efficient injection-locking via parallel pumping

R. Khymyn, et al. INTERMAG. 2017.

Взаимная синхронизация АФМО

AFM-based devices

R. Khymyn, et al. Sci. Rep. 2017.

Эксперименты по спиновой накачке

- \checkmark Electrical detection of AFMR in MnF₂/Pt bilayer
- ✓ Coplanar waveguide excitation
- \checkmark Easy axis is <u>perpendicular</u> to the interface
- $\checkmark \qquad \text{MnF}_2 @ 3\text{mm} \times 1\text{mm} \times 0.5\text{mm},$
- ✓ Pt @ 3mm×250µm×7nm

M.P. Ross, et al. JAP, 2015. Vol. 118. No. 233907

- Electrical detection of AFMR in MnF_2/Pt bilayer
- ✓ Gunn diode excitation and circular waveguide
- ✓ Easy axis is <u>parallel</u> to the interface
 - $MnF_2 @ 5mm \times 5mm \times 0.3 mm$,
 - Pt @ 4 nm thickness

P. Vaidya, et al. Science, 2020. Vol. 368. P. 160-165.

Одноосные АФМ изоляторы

AFM easy axis	$\boldsymbol{\mu}_{0}\boldsymbol{H}_{A}(T)$	$\mu_0 H_{EX}(T)$	f _{AFMR} (GHz)	$\Delta f(GHz)$	Ref.
FeF ₂	20	54	1400	~30	[1,2]
Cr ₂ O ₃	0.07	245	163	~5.6	[3,4]
MnF ₂	0.85	53	245	~2.64	[5,6]

Fe contraction of the second s

Hagiwara, M., et al. Int. J. Infrared Millimeter Waves. 1999. Vol. 20. P. 617.

- 1. R.C. Ohlmann, M. Tinkham. Phys. Rev. 1961. Vol. 123. No.2. P. 425-434.
- 2. M.T. Hutchings, et al. J. Phys. C: Solid State Phys. 1970. Vol.3. P. 307-322.
- 3. E.S. Dayhoff. Phys. Rev. 1957. Vol. 107. No. 1. P. 84-91.
- 4. S. Foner. Phys. Rev. 1963. Vol. 130. No. 1. P. 183-198.
- 5. F.M. Johnson, A.H. Nethercot. Phys. Rev. 1959. Vol. 114. No. 3. 705-716.
- 6. J.C. Burgiel, M.W.P. Strandberg. JAP. 1964. Vol. 3. No. 3. P. 852-853.

Двуосные АФМ изоляторы

AFM easy plane	$\begin{array}{c} \mu_0 \mathbf{H}_{A1} \\ (mT) \end{array}$	$\begin{array}{c} \mu_0 H_{A2} \\ (\mu T) \end{array}$	$\begin{array}{c} \mu_0 H_{EX} \\ (T) \end{array}$	$\begin{array}{c} \mu_0 H_{DMI} \\ (T) \end{array}$	f _{AFMR1} (GHz)	f _{AFMR2} (GHz)	⊿f (GHz)	Ref.
NiO	635	11000	968.4	-	1070	~140	~18	[1-3]
α -Fe ₂ O ₃	23.8	1.54	1040	2.72	~160	~ 6.7	~2.8	[4-6]

- 1. B. Condoh. Journ. of Phys. Soc. of Jap. 1960. Vol. 15. No.11. P. 1970-1975.
- 2. A.J. Sievers, M. Tinkham. Phys. Rev. 1963. Vol. 129. No.4. P. 1566-1571.
- 3. Z. Wang, et al. APL. 2018. Vol. 112. No. 252404.
- 4. H. Kumagai, et al. Phys. Rev. 1955. Vol. 99. No. 4. P. 1116-1118.
- 5. P.R. Elliston, G.J. Troup. J. Phys. C. 1968. Vol. 1. P. 169-178.
- 6. V.I. Ozhogin, V.G. Shapiro. Sov. Phys. JETP. 1969. Vol. 28. No. 5. P. 915-922.

Velikov, L., Rudashevskii, E. Sov. Phys. JETP. 1969. Vol. 29. No.5. P. 836-839.

to the AFM plane

to the AFM plane

Mathematical model $\mathbf{l} \times \left| \frac{1}{\omega} \frac{d^2 \mathbf{l}}{dt^2} + \alpha_{\text{eff}} \frac{d \mathbf{l}}{dt} + \hat{\Omega} \cdot \mathbf{l} \right| = \frac{1}{\omega} \left(\left[\mathbf{l} \times \frac{d \boldsymbol{\omega}_{\text{AC}}}{dt} \right] \times \mathbf{l} + \left(\mathbf{l} \cdot \boldsymbol{\omega}_{\text{DC}} \right) \left[\mathbf{l} \times \boldsymbol{\omega}_{\text{DC}} \right] - 2 \left(\mathbf{l} \cdot \boldsymbol{\omega}_{\text{DC}} \right) \frac{d \mathbf{l}}{dt} \right)$

Ivanov, 2014. Low Temp. Phys. 40, 91

External AC and DC magnetic fields

 $\boldsymbol{\omega}_{AC} = \gamma \mu_0 \left(\sin \alpha_{\rm P}, i \cos \alpha_{\rm P}, 0 \right) h_{\tilde{c}} e^{i\omega t} = \omega_{AC} \mathbf{n}_{AC} e^{i\omega t}$ $\boldsymbol{\omega}_{\mathrm{DC}} = \gamma H_{\mathrm{DC}} \mathbf{n}_{\mathrm{DC}}$

Математическая модель

$$\mathbf{l} \times \left[\frac{1}{\omega_{ex}} \frac{d^2 \mathbf{l}}{dt^2} + \alpha_{eff} \frac{d \mathbf{l}}{dt} + \hat{\Omega} \cdot \mathbf{l}\right] = \frac{1}{\omega_{ex}} \left(\left[\mathbf{l} \times \frac{d \omega_{AC}}{dt}\right] \times \mathbf{l} + \left(\mathbf{l} \cdot \boldsymbol{\omega}_{DC}\right) \left[\mathbf{l} \times \boldsymbol{\omega}_{DC}\right] - 2\left(\mathbf{l} \cdot \boldsymbol{\omega}_{DC}\right) \frac{d \mathbf{l}}{dt} \right)$$

External AC force

Solution

 $\boldsymbol{\omega}_{AC} = \gamma \mu_0 \left(\sin \alpha_{\rm P}, i \cos \alpha_{\rm P}, 0 \right) h_{\sim} e^{i\omega t} = \omega_{AC} \mathbf{n}_{AC} e^{i\omega t} \qquad \mathbf{l} = \boldsymbol{\lambda} + \mathbf{s} \cdot e^{i\omega t} + \text{c.c.}$

Dynamic equation

$$\left(-\frac{\omega^2}{\omega_{ex}} + i\omega\alpha_{eff}\right)\mathbf{s} + \Omega\mathbf{s} - (\lambda\cdot\Omega\lambda)\mathbf{s} - (\lambda\cdot\Omega\mathbf{s})\lambda = \left[\lambda \times \frac{d\omega_{AC}}{dt}\right]$$

Solution of dynamic equations

$$\mathbf{s} = \frac{\omega_{AC}\omega}{\omega_{AFMR}^2 - \omega^2 + i\gamma_0\omega} \mathbf{n}_{AC} = A(\omega)\mathbf{n}_{AC}$$

Rectified voltage

$$V_{\text{OUT}} \sim \kappa \cdot \left\langle \left[\mathbf{l} \times \frac{d\mathbf{l}}{dt} \right]_{\mathbf{n}_{\perp}} \right\rangle \sim \omega \left| A(\omega) \right|^2 \sin 2\alpha_{\text{P}}$$

Выпрямленное напряжение

Эксперименты по спиновой накачке

P. Vaidya, del Barco, et al.

NiO

A. Kirilyuk, P. Strmoukhov, et al.

Нейроморфные вычисления

"Neuromorphic computing:

use of artificial circuits that mimic neuro-biological architectures and processes characteristic for human's nervous system."

Нейроморфные вычисления в спинтронике:

• M. Sharad et al., "Spin-Based Neuron Model With Domain-Wall Magnets as Synapse", IEEE Trans. Nanotech. **11**, 843 (2012).

- A. Sengupta et al., "Spin orbit torque based electronic neuron", Appl. Phys. Lett. **106**, 143701 (2015).
- S. Lequeux et al. "A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy", Sci. Rep. **6**, 31510 (2016).
- A. Jaiswal et al. "Proposal for a Leaky-Integrate-Fire Spiking Neuron Based on Magnetoelectric Switching of Ferromagnets", IEEE Trans. Electron Devices **64**, 1818 (2017).
- C. Liyanagedera et al., "Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes", Phys. Rev. Appl. **8**, 064017 (2017).
- **Experimental work**: J. Torrejon et al., "Neuromorphic computing with nanoscale spintronic oscillators", Nature **547**, 428 (2017).
- <u>Review paper</u>: A. Sengupta and K. Roy, "Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives", Appl. Phys. Express **11**, 030101 (2018).

Только ферромагнитные материалы

нейроморфные процессоры

HIPPOCAMPUS REPLACEMENT

МОЗГ человека = 10¹¹ нейронов Количество контактов 1 нейрона ~ 10⁴ Общее количество связей в мозге ~ 10¹⁵ Один нейрон может находиться в 10 состояниях (не в 2) Количество комбинаций в мозге 10¹⁰¹⁵ Количество атомов во Вселенной ~ 10⁸⁰

НЕЙРОМОРФНЫЕ ПРОЦЕССОРЫ НА АФМ СО

Нейроморфный магнонный процессор

Бежевые элементы — входные нано-осцилляторы на эффекте переноса спинового момента Синие элементы — выходные наноосцилляторы Зеленые элементы — наномагниты для изменения направления движения спиновых волн Желтые линии — нановолноводы спиновых волн Розовые, пурпурные, синие, голубые линии примеры распространения спиновых волн по волноводам

Нейроморфная сеть осуществляет связь между нано-осцилляторами, их взаимную синхронизацию и квазиголографическую обработку сигналов.

- Сверхбыстрые нано-осцилляторы (нейроны) работают на терагерцовых частотах.
- АФМ магноны нечувствительны к паразитным наводкам между передающими волноводами благодаря отсутствию побочного дипольного поля.
- Информация закодирована в виде фазы сигналов, что позволяет передавать множество сигналов от разных источников одновременно в одном волноводе.

единичный импульс (единичный спайк)

Генератор сверхкоротких ИМПУЛЬСОВ 0.614 $A/\ cm^2$ 0.612 (c) (a 25 0.610 Current 10⁸ 0.608 0.606 20 0.604 Voltage V/cm 0.602 0,600 15 2.0 0.0 0,5 1.0 1.5 30 p (b) 25 10 20

Выход:

Вход:

 $T_p = 4 \text{ ps} = 1/f_{AFMR}$

Докритический режим AFM осциллятора генерация спайков

Simulation time, ps

Докритический режим AFM осциллятора генерация спайков

Simulation time, ps

Докритический режим AFM осциллятора генерация спайков Input current, j/j_{dc}^{th} Input signal $j_{\rm dc}/j_{\rm dc}^{\rm th}$ =0.8 $\alpha_{\rm eff}$ =0.01 a) 0**I** 501001500 Simulation time, ps Jutput electrical field, kV/m Сильная АС модуляция Bursting $j_{\rm ac}/j_{\rm dc}^{\rm th}=0.4$ \mathbf{d} 501001500

Simulation time, ps

Докритический режим AFM осциллятора генерация спайков

Спайки могут быть созданы внешним АС воздействием

или спайками, созданными другим осциллятором

Нейроморфный режим единичного **AFM** осциллятора

Моделирование двух **AFM** осцилляторов

$\frac{1}{\omega_{ex}}\ddot{\phi}_{n} + \alpha \dot{\phi}_{n} + \frac{\omega_{an}}{2}\sin(2\phi_{n}) = \sigma j_{n} + \sum_{m} \kappa_{nm} \dot{\phi}_{m}$ Связь

Coupling coefficient κ :

- Coupling by common Pt layer: $\kappa \sim 10^{-4}$ (simulations: $\kappa = 5 \times 10^{-4}$)
- Coupling by Cu layer: $\kappa \sim 10^{-2}$ 10^{-3}
- Coupling by external control circuit: arbitrary κ_{nm}

ОR логический элемент

IN1	IN2	OUT
0	1	1
0	0	0
1	1	1
1	0	1

AND логический элемент

Signal, a.u.	
Signal, a.u.	
0.05ns	0.25 ns

AND

IN1	IN2	Ουτ
0	1	0
0	0	0
1	1	1
1	0	0

Заключение

- Антиферромагнитная спинтроника «горячая» область исследований физики магнитных явлений.
- АФМ осцилляторы и детекторы перспективные активные элементы функциональных блоков терагерцевых устройств.
- Незатронутые темы: нелинейная динамика доменов, солитонов и скирмионов; конденсация магнонов; генерация чистых спиновых токов и т.д.

УСПЕХИ ФИЗИЧЕСКИХ НАУК

ОБЗОРЫ АКТУАЛЬНЫХ ПРОБЛЕМ

Диэлектрическая магноника — от гигагерцев к терагерцам

С.А. Никитов, А.Р. Сафин, Д.В. Калябин, А.В. Садовников, Е.Н. Бегинин, М.В. Логунов, М.А. Морозова, С.А. Одинцов, С.А. Осохин, А.Ю. Шараевская, Ю.П. Шараевский, А.И. Кирилюк

Представлен облор современного состояния исследований в области должтрической налюники и магнотной спинтропики. Описаны теоретические и желериментальные методы исследования филических процессов и расчёта параметров магнотых микро- и напоструктур. Рассмотрены основные полятия магнотной спинтропики, филические эффекты, на которых опа основана, а также перстективные ё применетия для систем обработки, передачи и приёма информационных сигналов. Особое внимание уделено возможности повышения рабочих частот магновных устройство от гиласерцевого частотного диапазона до теригерцевого. Обсуждовотся конкретные реализации элементной базы магнопики, а также прите к дальнейшего развитя.

Ключевые словае магновика, спинтроника, спин-волновая электроника, магновные кристаллы, СВЧ-электроника, магнитные структуры, спиновые волны, волноводы, магнитные плёнки, магновная логика, устройства обработки виформации

PACS numbers: 85.70.-w, 85.75.-d

DOI: https://doi.org/10.3367/UFNr.2019.07.038609

Том 190, № 10

Содержание

1. Введение (1009).

- Теоретические сведения в диланстрической магионные (1010).
 2.1. Базоване конструкции магионных устройсти обработки сигиналов.
 2.2. Магематические метода описания магионных структур.
 2.3. Спиновые эффекты в магионных структурах.
 2.4. Топологическая магионныя.
 2.5. Магослойные магионные тегероструктури.
- Экспериментальные методы исследования диэлектрических магновных структур (1023).
- 4. Магнонные кристаллы (1024).

С.А. Никитов ^(1,2,4), А.Р. Съфин^(1,4,4), Д.В. Калибин ^(1,2,4), А.В. Садовинков ^(1,3,4), Е.Н. Бетлини ^(1,4), М.В. Логунов ^(1,5), М.А. Морзовски ^(3,4), С.А. Одиннов ^(1,3), С.А. Осоков ^(1,2,4), А.Ю. Шаракискан ⁽¹⁾, Ю.П. Шаракекский ^(1,4), А.И. Кирилиов ^(1,5) ⁽¹⁾ Имститут радиотехники и настетровики ⁽¹⁾ Максинату радиотехники и настетровики ⁽¹⁾ Максинату радиотехники и настетровики ⁽²⁾ Массикиет (1,6) иликов РАН, ⁽²⁾ Моссковски (1,6) иликов ^(1,6) иликов ^(1,6) иликов ^(1,6)

- (национальный исследовательский университет), Институтский пер. 9, 141701 Долгопрудный, Московская обл.,
- Российская Федерация
- ⁽³⁾ Саратовский государственный университет им. Н.Г. Чернышевского.
- им. н.т. чернышенского, ул. Астраханская 83, 410012 Саратов, Российская Федерация
- (4) Национальный исследовательский университет МЭИ.
- ул. Красноказарменная 14, 111250 Москва, Российская Федерация ⁽⁵⁾ FELIX Laboratory, Radboud University,
- 6525, ED Nijmegen, Netherlands
- E-mail: ^(a) nikitov@cplire.ru, ^(b) arsafn@gmail.com, ^(c) dmitry.kalyabin@phystech.edu, ^(d) sadovnikovav@gmail.com, ^(e) egbegin@gmail.com, ^(f) logunovmv@bk.ru,
 - (a) mamorozovama@yandex.ru, (b) odinoff@gmail.com, (i) osokinserg@gmail.com, (i) sharaevskyyp@info.sgu.ru

Статья поступила 6 июня 2019 г.,

после доработки 5 июля 2019 г.

1 УФН, т. 190, № 10

- Магновные волноведущие структуры типа феррит-полупроводник (1027).
- 6. Доменные границы и скирмноны в устройствах магноники (1030).
- 7. Магновные осцилляторы и детекторы (1033).
- Терагерцевая магноника (1034).
 Заключение. Перспективы примено
 - Заключение. Перспективы применения и открытые проблемы (1037).

Список литературы (1037).

1. Введение

Прошло более трёх лет с момента опубликования в журнале Успехи физических наук нашего обзора [1], посвящённого магнонике как новому научному направлению в спинтронике и спин-волновой электронике. За эти годы число публикаций в данной области стремительно возросло в связи с высокой научной активностью и развитием технологий, позволяющих создавать новые материалы и структуры для исследования новых физических явлений и формирования новой компонентной базы на основе магноники. В эти же годы появилось несколько обзоров в основном в англоязычных журналах, посвяшённых отлельным разделам магноники и спинтроники. в частности антиферромагнитной спинтронике [2, 3], новому направлению в спинтронике — стрейнтронике [4, 5], фундаментальным проблемам создания элементной базы нового вида памяти для нейроморфных систем [6, 7], магнонным кристаллам с фокусировкой на обработку информационных сигналов [8].

В то же время многие другие вопросы, связанные с исследованиями в области магноники, остались вне об суждения. Кроме того, в перечисленных обзорах в основном обсуждались результаты, полученные авторами этих обзоров. В настоящем обзоре мы хотим рассмотреть распиренный круг опубликованных результатов в стиле нашего предызущего обзора, описать неданно воз-

© С.А. Никитов, А.Р. Сафин, Д.В. Казабин, А.В. Садовников, Е.Н. Бегинин, М.В. Логувов, М.А. Моропова, С.А. Одинцов, С.А. Осокии, А.Ю. Шараевския, Ю.П. Шараевский, А.И. Кирилюк 2020

Успехи физических наук. 2020. Т.190. № 10. С. 1009-1040.

ВОЗБУЖДЕНИЕ ТЕРАГЕРЦЕВЫХ МАГНОНОВ В АНТИФЕРРОМАГНИТНЫХ НАНОСТРУКТУРАХ: ТЕОРИЯ И ЭКСПЕРИМЕНТ

A. P. Cadun a.e*, C. A. Hunumos a.b.c**, A. H. Kupunon a.d, A. B. Kanabun a.b.

A. B. Cadoenukos a,c, II. A. Cmpemoyxos a,b,d, M. B. Jozynos a, II. A. Honos a,b

^а Ниститут радиотехники и электроники им. В. А. Котельникова Российской академии наук 125009, Москва, Россия

^b Московский физико-технический институт (Государственный университет) 141700, Долгопрудний, Московская обл., Россия

^с Саратовский государственный университет им. Н. Г. Чернышевского 410071, Саратов, Россия

> ^d FELIX Laboratory, Radboud University 6525, ED Nijmegen, The Netherlands

^в Национальный исследовательский университет «МЭН» 111250, Москов, Россия

> Поступила в редакцию 28 января 2020 г., после переработки 28 января 2020 г. Принята к публикация 10 марта 2020 г.

Представлен обзор современного состояния теоретических и экспериментальных исследований возбуждения, приема и распространения магновов в антиферромагнитных наноструктурах. Использование свойств антиферромагнитных материалов, таких как отсутствие макроскопической намагниченности, большая величина обменных взаимодействий, сложная магнитокристаллическая структура дет возможность реализовать новые виды памяти и устройств функциональной электроники. При этом изучение возможных магнонных эффектов в антиферромагнетиках в микро- и наномасштабе требует новых как экспериментальных, так и теоретических подходов. Целью данного обзора является описание и систематизация последних достижений в области возбуждения магнитиких конебаний — магнонов в антиферромагнетиках, вызванных током и оптическим илучение. После изложения основных теоретических сеедений об антиферромагнетиках и многослойных антиферромагнитных гетероструктурах рассмотрены модели иля описания индуциремых током и оптическим импульсамии явлений в наностероструктурах, соцержащих антиферромагнетики. Кратко рассмотрены методы исследования антиферромагнетики книрои наноструктур с помощью мандельштам-бриллюзновского рассвиния вантиферромагнетикы книрои наноструктур с помощью мандельштам-бриллюзновского рассвиния ванти вения и перостриктивы практического применения.

Статья для специального выпуска ЖЭТФ, посвященного 100-летию А. С. Боровика-Романова

DOI: 10.31857/S0044451020070081

1. ВВЕДЕНИЕ

Активные всследования в области антиферромагнитных материалов в структур, особенно с размерами в единицы и сотни ванометров, в последпие годы позволили получить научные результаты, которые легли в основу пового научного направления — антиферромативтной (AФM) спинтроники [1–3]. В АФМ-спинтронике исследуются процессы переноса мативтного момента или спина электрическим током в структурах, содержащих АФМ. Перенос пива может также осущестлияться с помо-

85

Журнал экспериментальной и теоретической физики. 2020. Т.158. Вып.1(7). С. 85-99.

^{*} E-mail: arsafin@gmail.com

^{**} E-mail: nikitov@cpline.ru