Фазовые превращения и дефекты в кристаллах

Б.Б.Страумал

ИФТТ РАН, НЦЧ РАН

Черноголовка, где это?

Черноголовка, вид сверху

Черноголовка, вид сверху

Черноголовка, основатели

Фазовые превращения: -- в объеме -- на внешних и внутренних границах раздела

-- на внешних поверхностях (огранение-потеря огранки)

Фазовые превращения:

Why the facets of surfaces and interfaces appear?

Two amorhous phases: smooth interface

Crystal inside of an amorphous phase

Equilibrium shape of the crystal surface

Вульфъ Г.В. О скорости роста и растворенія кристалловъ *Тр. Варшавск. общ. естествоисп.* 1894–1895. <u>Т. 6.</u> вып. 9. С. 7–11.

Вульфъ Г.В. Къ вопросу о скоростяхъ роста и растворенія кристаллическихъ граней *Изв. Варшавск. ун-та,* 1895 (кн. 7–9). 1896 (кн. 1,2). С. 1–120.

Wulff G. Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflächen *Zeitschrift für Krystallographie* 1901. Vol. 34. P. 449–530.

Temperature influence on the equilibrium shape of the surface

Temperature influence....

Temperature influence.... NaCI: (100) facets

$T = 620^{\circ}C$

T = 710 °C

J.C. Heyraud, J.J. Mėtois, J. Crystal Growth 84 (1987) 503

Temperature influence on the equilibrium shape of the surface

NaCI: (100) facets

T = 710 °C

J.C. Heyraud, J.J. Mėtois, J. Crystal Growth 84 (1987) 503

T = 0 $0 < T < T_{R_3}T_{R_3} < T < T_{R_2}T_{R_2} < T < T_{R_1}T_{R_1} < T < T_{C}$

R < 0

R > 0

Lattice gas model with NN and NNN interactions C. Rottman, R. Wortis, *Phys. Rev. B* 29 (1984) 328

Temperature influence....

He⁴: third roughening transition

T = 0.4 KT = 0.35 K

R.E.Wolf, S. Balibar, *Phys. Rev. Lett.* 51 (1983) 1366

Temperature influence....

He³: (100), (110) and (112) facets

T = 0.022 K

R. Wagner, S.C. Steel, O.A. Andreeva, R. Jochemsen, G. Frossati. *Phys. Rev. Lett.* 76 (1996) 263

window

(121)

(b)

Au single crystals at 0.95 T_m

Au single crystal at 0.95 T_m. Shape discontinuities

Au single crystal at 0.95 T_m. Shape discontinuities

Au single crystal at 0.95 T_m. Shape discontinuities

Pb single crystals at 0.97 T_m. No shape discontinuities

J.C. Heyraud, J.J. Metois: Surf. Sci, 128, 334 (1983)

How the Pb facets grow...

J.C. Heyraud, J.J. Metois: Surf. Sci, 128, 334 (1983)

Pb single crystal at 0.97 T_m. No shape discontinuities

J.C. Heyraud, J.J. Metois: Surf. Sci, 128, 334 (1983)

Surfaces of pure metals. Experiment:

- no more than two crystallographically different facets
- facets are isolated and separated by portions of rough surfaces

Roughening of Pb surfaces: P-T behaviour

C. Rottman, R. Wortis, J.C. Heyraud, J.J. Metois. PRL 52 (1984) 1009

Rounding near cristal facet

 $y = A(x - x_c)^{\theta}$ + higher order terms

Andreev theory (mean-field approximation): $\theta = 2$ Pokrovsky-Talapov theory (including fluctuations): $\theta = 3/2$

A.F. Andreev. *Zh.Eksp.Teor.Fiz.* 79 (1981) 2042 V.L. Pokrovsky, A.L. Talapov. *PRL* 42 (1979) 65 and *Zh.Eksp.Teor.Fiz.* 78 (1980) 269

Roughening of Pb surfaces: P-T behaviour

C. Rottman, R. Wortis, J.C. Heyraud, J.J. Metois. PRL 52 (1984) 1009

Equilibrium crystal shapes in the BCSOS model with enhanced interaction range (a) ECS in the exactly soluble square lattice BCSOS model with stochastic FRE point. (b) ECS with a first-order line extending into the rough area. (c) ECS with first-order facet-to-

(c) ECS with first-order facet-toround boundaries and PTE points.

 (d) ECS with a spontaneous tilted rough phase, i.e., with a <u>first order ridge inside</u> <u>the rough phase</u>.

D. Davidson, M. den Nijs. PRL 84 (2000) 326

-- на внутренних границах раздела (огранение-потеря огранки)

Фазовые превращения:

Low angle grain boundary:

Symmetric tilt boundary, individual lattice dislocations

Reed (1953)

Краевая дислокация (edge dislocation)

Reed (1953)

High angle grain boundary

Misorientation, $\theta \rightarrow$

Two lattices: coincidence site lattice

Two grains with coincidence site lattice

Two grains with coincidence site lattice

Two amorhous phases: smooth interface

Crystal inside of an amorphous phase

Two crystalline lattices

Two crystalline lattices

Two lattices: coincidence site lattice

Facets in the coincidence site lattice

Facets in the coincidence site lattice

Coincidence sites lattice Σ **3**

Coincidence sites lattice Σ 3 (thick lines) and displacement shift lattice (thin lines)

Scheme of Cu bicrystal with coaxial Σ 3 GBs

Cu bicrystal with cylindric $\Sigma 9/\Sigma 3$ GBs

Section of Cu bicrystal with cylindric $\Sigma 9/\Sigma 3$ GBs, 1020°C, 48 h

Σ 3 tilt GB in Cu, 1020°C (100)_{CSL} and 9*R* non-CSL facets (twin plates are not rectangular)

Σ3 tilt grain boundary in Cu, 1020°C (100)_{CSL} and 9*R* non-CSL facets

9*R* 82° facet

Non-CSL 9*R* facet of the Σ 3 tilt GB (HRTEM)

Step height 0.58*a*, equal to that of (010)_{CSL}

Phase diagram for the \Sigma3 GBs in Cu

Rectangular facets in Au (100)_{CSL} and (010)_{CSL} facets

P.J. Goodhew, T.Y. Tan, R.W. Balluffi, Acta Metall. 26 (1978) 557–567

Σ3 tilt grain boundary in Cu, 800°C (100)_{CSL} and 9*R* non-CSL facets

9*R* 82° facet

Phase diagram for the \Sigma3 GBs in Cu

Σ3 tilt grain boundary in Cu, 650°C (100)_{CSL} and (110)_{CSL} facets

Σ3 tilt grain boundary in Cu, 650°C (100)_{CSL} and (130)_{CSL} facets

Phase diagram for the \Sigma3 GBs in Cu

Σ3 tilt grain boundary in Cu, 400°C (100)_{CSL} and (010)_{CSL} facets

Σ3 tilt grain boundary in Cu, 400°C (100)_{CSL}, (130)_{CSL} and (120)_{CSL} facets

Phase diagram for the \Sigma3 GBs in Cu

Phase diagram for the \Sigma3 GBs in Cu

Σ3 tilt GB in Cu: increase of number of facets with decreasing temperature

800°C

400°C

Σ3 tilt GB in Cu: increase of number of facets with decreasing temperature

650°C

400°C

Σ 3 and Σ 9 grain boundaries in Cu. Experiment:

- By temperature decrease the number of (crystallographically different) facets increases up to six
- The GB facets are not separated by the rough GB portions. The facets form sharp edges.

Scheme of Mo bicrystal with coaxial Σ 3 GBs

Shape of Σ 3 tilt GB in Mo

How a facet contacts curved (rough) surface or interface

Roughening of Pb surfaces: P-T behaviour

C. Rottman, R. Wortis, J.C. Heyraud, J.J. Metois. PRL 52 (1984) 1009

Rounding near cristal facet

 $y = A(x - x_c)^{\theta}$ + higher order terms

Andreev theory (mean-field approximation): $\theta = 2$ Pokrovsky-Talapov theory (including fluctuations): $\theta = 3/2$

A.F. Andreev. *Zh.Eksp.Teor.Fiz.* 79 (1981) 2042 V.L. Pokrovsky, A.L. Talapov. *PRL* 42 (1979) 65 and *Zh.Eksp.Teor.Fiz.* 78 (1980) 269

Roughening of Pb surfaces: P-T behaviour

C. Rottman, R. Wortis, J.C. Heyraud, J.J. Metois. PRL 52 (1984) 1009

Shape of Σ 3 tilt GB in Mo

Фазовые превращения:

-- на внутренних границах раздела (смачивание)

Смачивание внешней поверхности

$\sigma_{GB} < 2\sigma_{SL}, \theta > 0$

 $\sigma_{GB} < 2\sigma_{SL}, \theta > 0$

Граница зерен в контакте с расплавом устойчива

$$\sigma_{GB} > 2\sigma_{SL}, \ \theta=0$$

Граница зерен в контакте с расплавом устойчива

$$S \qquad \sigma_{SL} \qquad \sigma_{SL} \qquad \sigma_{SL} \qquad \sigma_{GB} \qquad \sigma_{GB}$$

 $\sigma_{GB} > 2\sigma_{SL}, \ \theta=0$

Граница зерен в контакте с расплавом неустойчива и должна заменяться жидкой прослойкой

 $\sigma_{GB} < 2\sigma_{SL}, \ \theta > 0$

Граница зерен в контакте с расплавом устойчива

Есть системы, в которых такое превращение происходит с повышением температуры

Есть системы, в которых такое превращение происходит с повышением температуры

Температура

 T_w

<u>Система Al-Sn</u> граница наклона <011>{001} θ = 38,5°

С повышением температуры контактный угол понижается, становится равным нулю при 617°С и остается равным нулю при дальнейшем повышении температуры

Вторая (смачивающая) фаза может быть твёрдой

Fe–1.3 вес.% C, 915°C, все γ-ГЗ "смочены" Fe₃C

Выше 905°С все γ-ГЗ "смочены" фазой Fe₃C

Между 850 и 905°С часть γ-ГЗ "смочена" Fe₃C

Fe–1.3 вес.% C, 885°C, часть γ-ГЗ "смочена" Fe₃C

Ниже 850°С нет γ-ГЗ "смоченных" фазой Fe₃C

Fe–1.3 вес.% C, 885°C, часть γ-ГЗ "смочена" Fe₃C

Булатная сабля, Стамбул 1656 (Подарок купца И. Булгакова царю Алексею Михайловичу, коллекция Оружейной палаты московского Кремля)

Булатная сабля, Стамбул 1656 (Подарок купца И. Булгакова царю Алексею Михайловичу, коллекция Оружейной палаты московского Кремля)

Предсмачивание, предплавление

GB segregation: fracture surfaces of Cu–50 at. ppm Bi polycrystals

800°C

GB segregation: fracture surfaces of Cu–100 at. ppm Bi bicrystals

GB 33.2 °<100> 900°C

GB 36.5 °<100> 800°C

PSEUDOPARTIAL WETTING: BETWEEN COMPLETE AND PARTIAL

Pseudopartial wetting for grain boundaries=

AI-30wt.% Zn after HPT: no completely wetted GBs

AI - 30 wt. % Zn, 5 GPa, 1 rpm, 5 rot

nm

WC-Co CEMENTED CARBIDES

Thin GB layer of Co, $\theta = 88^{\circ}$

Прикладное значение

- Жидкоподобные равновесные ГЗ прослойки с высокой диффузионной проницаемостью:
 активированное спекание
 охрупчивание ГЗ или катастрофическая электромиграция
- Висмут в припоях для меди: область безопасных концентраций

Фазовые превращения: -- в объеме под воздействием кручения под высоким давлением

What is severe plastic deformation?

Material is strained, but --it cannot break and --conserves its shape

Principle of High Pressure Torsion

Tool with a sample located within a cavity in a support anvil Tool with cavities in both anvils

Principle of Equal Channel Angular Pressing

Principle of Accumulative Roll Bonding

Principle of Cyclic Extrusion and Compression

Principle of Twist Extrusion

Severe plastic deformation accelerates diffusion and drives phase transitions:

- Decomposition of supersaturated solid solutions Al–Zn, Cu–Ni, Cu–Co, Cu–Ag
- Formation of supersaturated solid solutions Cu–Co, Cu–Ag
- Crystalline phase → one or two amorphous phases
 NiTi, NdFeB, Ni–Nb–Y
- Amorphous phase → Crystalline phases
 NiFeSiB, FeSiB, CuZrTi...
- fcc-Fe → bcc-Fe, fcc-Co → hcp-Co, αTi↔βTi↔ωTi
 Grain boundary phases

Can we predict, what happens with phases by SPD?

Steady-state and grain refinement

B.B. Straumal et al Scripta Mater 70 (2014) 59

Steady-state (saturation) during SPD

Steady-state (saturation) during SPD

Grain size in steel, "up and down"

Y. Ivanisenko et. al Acta Mater. **51** (2003) 5555 S. Lee, Z. Horita: Mater. Trans. **53** (2012) 38

Grain size in Ni, "up and down"

R. Pippan et. al Annu. Rev. Mater. Res. 40 (2010) 319

Diffusive phase transfromations

With change of the composition of phases and mass transfer

Displacive (martensitic) phase transformations

Without change of the composition of phases Without mass transfer Atoms conserve their neighbors Orientation relationships Let us consider pure diffusive Phase transformations

Decomposition of supersaturated solid solutions
 Formation of supersaturated solid solutions

Principle of High Pressure Torsion

Tool with a sample located within a cavity in a support anvil Tool with cavities in both anvils

Does the composition of phases after SPD depend on the composition of phases before SPD??

What happens, if we deform fully homogenized and fully precipitated alloy???

Mater. Lett. 118 (2014) 111

What happens, if we deform fully homogenized and fully precipitated alloy???

Mater. Lett. 118 (2014) 111

What happens, if we deform fully homogenized and fully precipitated alloy???

Mater. Lett. 118 (2014) 111

Torsion torque reaches steady state after 1.5 rot.

Rotation angle, deg

Mater. Lett. 118 (2014) 111

Lattice spacing and Co content in Cu-matrix

Mater. Lett. 118 (2014) 111

Lattice spacing and Co content in Cu-matrix

Mater. Lett. 118 (2014) 111

Lattice spacing and Co content in Cu-matrix

Mater. Lett. 118 (2014) 111
Lattice spacing and Co content in Cu-matrix

Mater. Lett. 118 (2014) 111

Lattice spacing and Co content in Cu-matrix

Mater. Lett. 118 (2014) 111

Lattice spacing and Co content in Cu-matrix

Mater. Lett. 118 (2014) 111

Supersaturated solid solution partially decomposes to 2.5 wt.% Co.

Co precipitates partially dissolve in the Cu-based solid solution up to 2.5 wt.% Co in (Cu)

Dissolution and precipitation proceed simultaneous and compete with each other

What happens, if we deform fully homogenized and fully precipitated alloy???

Mater. Lett. 118 (2014) 111

What happens, if we deform fully homogenized and fully precipitated alloy???

*T*_{eff}= 900°C

Mater. Lett. 118 (2014) 111

Does the composition of phases after SPD depend on the composition of phases before SPD??

No!!!

(equifinality)

The composition of phases after SPD is as if they were annealed at 900°C

(so called equivalent or effective temperature) SPD-driven mass transfer is equivalent to the bulk diffusion with $D_{SPD} \sim 10^{-16} \text{ m}^2/\text{s}$

Extrapolated bulk diffusion coefficient at 300K is D_{SPD} ~ 10⁻³⁵ m²/s

> Bulk diffusion coefficient at T_{eff} is $D_{eff} \sim 10^{-14}$ m²/s

The SPD-driven mass transfer is equivalent to the annealing at 900°C

(equivalent or effective temperature)

Why Teff is equal to 900°C?

What happens in other Cu-based alloys?

Concentration "corridor" in Cu-Ag alloys

Concentration "corridor" in Cu-Sn alloys

Acta Mater. 195 (2020) 184

Correlation between T_{eff} and activation enthalpy of bulk diffusion of the dopant

При перемещении в соседний узел атом преодолевает энергетический барьер

Correlation between T_{eff} and T_m of the dopant

Correlation between activation enthalpy of bulk diffusion and T_m of the dopant

Facets in twin GBs in pure Cu after HPT are as if the sample was annealed at 900±50°C

ADEM (2020) 1900589

If $T_{\rm HPT}$ increases, then $T_{\rm eff}$ decreases

JETP Letters 112 (2020) 37 Письма в ЖЭТФ 112 (2020) 45

Diffusion- and diffusionless (martensitic) phase transformations

Ti-Fe alloys αTi↔βTi↔ωTi

$\alpha Ti \leftrightarrow \beta Ti \leftrightarrow \omega Ti$ transformations

$\alpha Ti \leftrightarrow \beta Ti \leftrightarrow \omega Ti$ transformations

[2110]

(a) bcc β-Ti

[110]₆ (222)

[2110]

[101]₈

Acta Mater. 144 (2018) 337

$\alpha Ti \leftrightarrow \beta Ti \leftrightarrow \omega Ti$ transformations

Best fit between β Ti and ω Ti phases is at 4 wt. % Fe

Acta Mater. 144 (2018) 337

Conclusions

1. Composition of phases after HPT does not depend on that before HPT. It is, therefore, equifinal. 2. It is equal to that after equibrium annealing at certain $T_{\rm eff}$. 3. Reason: high steady-state concentration of lattice defects in dynamic equilibrium 4. $T_{\rm eff} \sim (T_{\rm m} \text{ and } Q_{\rm b})$ of the dopant 5. Diffusion- and diffusionless (martensitic) phase transformations

Фазовые превращения:

-- на внутренних границах раздела