

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

ЛАЗЕРНОЕ ОХЛАЖДЕНИЕ И ЛОКАЛИЗАЦИЯ НЕЙТРАЛЬНЫХ АТОМОВ

Машко Анастасия

Институт спектроскопии Российской академии наук

Национальный исследовательский университет «Высшая школа экономики»

02.02.2020

Нобелевские лауреаты

За создание методов охлаждения и улавливания атомов лазерным лучом (1997)

Клод Коэн-Таннуджи

СтивенЧу

За достижение конденсации Бозе — Эйнштейна в разреженных газах щелочных металлов и за начальные фундаментальные исследования свойств конденсатов (2001)

Эрик Корнелл

Вольфганг Кеттерле

Уильям Филлипс

Артур Эшкин

Карл Виман

За изобретение оптического пинцета и их применение в биологических системах (2018)

Лазерное охлаждение и атомная оптика

Первые идеи по охлаждению атомов и ионов

- 1950 Альфред Кастлер, 1974 Яков Борисович
 Зельдович

 $(\omega \rightarrow \omega + \delta \omega)$

• 1975 Вайнлэнд и Демельт, Хэнч и Шавлов

Атомы и молекулы при комнатной температуре движутся со скоростями порядка 300 м/с

При температуре жидкого азота (77К) атомы имеют скорость 150 м/с

При температуре жидкого гелия (4К) 90 м/с (50 MHz для Rb)

Основной принцип лазерного охлаждения

Доплеровское охлаждение

Доплеровское охлаждение в одном измерении.

• 1977 Доплеровский предел охлаждения

$$m\langle v_i^2 \rangle = k_{\rm B}T = \frac{\hbar\Gamma}{4} \left(\frac{\Gamma}{2\delta} + \frac{2\delta}{\Gamma} \right), \ T_{\rm D} = \frac{\hbar\Gamma}{2k_{\rm B}}$$

• Для натрия 240 мкК (30 см/с), Rb 146 мкК

Первый эксперимент

- 1981 Андреев, Балыкин, Летохов, Миногин 1.5 К
- 1976 Летохов, Миногин, Павлик ЧИРПИРОВАНИЕ ЧАСТОТЫ

Основные проблемы на пути к лазерному охлаждению

Процесс оптической накачки, препятствующий циклическому возбуждению в щелочных атомах типа натрия (а); использование перекачивающего лазера для обеспечения многих циклов поглощение – излучение (б).

Зеемановский замедлитель

Вверху — схематическое изображение зеемановского замедлителя. Внизу — изменение поля вдоль оси.

Зеемановский замедлитель

Распределение по скоростям до (штриховая линия) и после (сплошная линия) зеемановского охлаждения. Стрелкой отмечена максимальная скорость, резонансная с замедляющим лазером (дополнительный максимум при 1700 м с⁻¹ дают атомы в состоянии F = 1, которые оптически накачиваются в состояние F = 2 в течение процесса охлаждения).

Магнитное поле

Энергетические уровни атома натрия в магнитном поле. Переход, используемый для лазерного охлаждения, показан сплошной стрелкой, а один из почти запрещенных каналов возбуждения, ведущий к нежелательной оптической накачке, — штрихами.

Магнитная ловушка с использованием Зеемановского замедлителя

ном охлаждении.

о мс

26 мс

Магнито-оптическая ловушка

Сизифово охлаждение

ДИПОЛЬНАЯ ЛОКАЛИЗАЦИЯ АТОМОВ ИМПУЛЬСНЫМ ИЗЛУЧЕНИЕМ ФЕМТОСЕКУНДНОЙ ДЛИТЕЛЬНОСТИ

V.I. Balykin *et al.*, Rep. Prog. Phys. 63 (2000).

Лазерное охлаждение и локализация атомов

There are not appropriate for trapping sources of CW radiation in UV spectrum range

Efficiency of harmonic generation depends on the peak laser intensity

Cooling with UV radiation

Время жизни атомов в ловушке

Photoassociation of Rb

Theory of momentum diffusion

PHYSICAL REVIEW A

VOLUME 21, NUMBER 5

MAY 1980

Motion of atoms in a radiation trap

J. P. Gordon and A. Ashkin

p. 1606

$$Does not saturate$$

$$2D_{p} = \hbar^{2} \alpha^{2} \Gamma \frac{p}{2(1+p)^{3}} \left[1 + \left(\frac{\Gamma^{2}}{|\gamma|} - 1\right) p + 3p^{2} + \frac{4|\gamma|^{2}}{\Gamma^{2}} p^{3} + \hbar^{2} \beta^{2} \Gamma \frac{p}{2(1+p)^{3}} \left[1 + \left(3 - \frac{\Gamma^{2}}{|\gamma|^{2}}\right) p + p^{2} \right] + 2\hbar^{2} (\vec{\alpha} \cdot \vec{\beta})_{\Omega} \frac{p^{2}}{(1+p)^{3}} \left[\frac{\Gamma^{2}}{|\gamma|^{2}} + p \right] + (\hbar k)^{2} \Gamma \frac{p}{2(1+p)}.$$
(30)

Does not work in case of femtopulses (p~1)

Lifetime due to momentum diffusion

Теория импульсной диффузии

Чтобы различить импульсную диффузию от

фотоассоциации:

- •Фиксируем спектральную ширину
- •Фиксируем среднюю интенсивность
- •Изменяем длительность импульса
- •Изменяем пиковую интенсивность

Экспериментальная установка

Измерения

Импульсная ловушка с минимальной длительностью импульсов

Длительность импульсов <mark>70</mark> фс!

Afanasiev, A.E., Meysterson, A.A., Mashko, A.M. et al. Appl. Phys. B 126, 26 (2020).

Эффективность локализации vs интенсивность

Afanasiev, A.E., Meysterson, A.A., Mashko, A.M. et al. Appl. Phys. B 126, 26 (2020).

Время жизни атомов в ловушке VS средняя интенсивность

Afanasiev, A.E., Meysterson, A.A., Mashko, A.M. et al. Appl. Phys. B 126, 26 (2020).

Заключение

- Произведена локализация атомов полем лазерных фемтоимпульсов.
- Изучены основные механизмы потерь атомов из импульсной дипольной ловушки.
- ✓ Изучена зависимость времени жизни атомов от средней интенсивности локализующего поля в импульсных дипольных ловушках различной длительности импульса.

