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the talk is based on:

◦ I.S. Burmistrov, I.V. Gornyi, V.Yu. Kachorovskii, M.I. Katsnelson,
A.D. Mirlin, Quantum elasticity of graphene: Thermal expansion
coefficient and specific heat, Phys. Rev. B 94, 195430 (2016)

◦ I.S. Burmistrov, I.V. Gornyi, V.Yu. Kachorovskii, M.I. Katsnelson,
J.H. Los, A.D. Mirlin, Stress-controlled Poisson ratio of a crystalline
membrane: Application to graphene, Phys. Rev. B 97, 125402 (2018)

◦ I.S. Burmistrov, V.Yu. Kachorovskii, I.V. Gornyi, A.D. Mirlin
Differential Poisson’s ratio of a crystalline two-dimensional membrane,
Annals of Physics(N.Y.) 396, 119 (2018)

◦ D.R. Saykin, I.S. Burmistrov, I.V. Gornyi, V.Yu. Kachorovskii,
Absolute Poisson’s ratio of a crystalline two-dimensional membrane, in
preparation.
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Introduction: Hooke’s law and Young’s modulus

◦ Hooke’s law for bulk materials:
F
Wt = E ∆L

L
where E is bulk Young’s modulus

◦ Hooke’s law for thin films: σ = F
W = Y ∆L

L

◦ Young’s modulus Y = Et for monoatomic layers:

pine wood aluminium foil graphene
Y , H/m 1 7 340

Lamé coefficients µ and λ, Y = 4µ(µ + λ)/(2µ + λ)
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Introduction: bending rigidity

[adopted from Meyer et al. (2007)]

◦ bending rigidity κ ∼ Yt2

◦ for graphene κ ≈ 1 eV

graphene density ρ ≈ 7 · 10−8 g/cm2
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Introduction: phonons in 2D crystalline membrane - 2

◦ spectrum of in-plane phonons: ω(t )
q = q

√
µ/ρ, ω(l)

q = q
√

(2µ + λ)/ρ,
◦ spectrum of flexural phonons: ωq = q2√κ/ρ

quantumclassical

0 q* qT

T

q

Ω
q

◦ temperature momentum: ~ωq ∼ T =⇒ qT = ρ1/4T 1/2

~1/2κ1/4

◦ ultra-violet momentum scale: quv ∼
√

Y /κ ∼ 1/t
◦ ultra-violet energy scale: Tuv ≈ gκ, g = ~Y

ρ1/2κ3/2

◦ for room-temperature graphene: qT ≈ 1 Å−1, g ≈ 0.05, Tuv ≈ 500 K
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Introduction: instability of 2D membrane

membrane with fluctuations

membrane without fluctuations

r

◦ parametrization of the membrane surface: r = ξxex + ξyey + u + hez

◦ membrane surface: L2 = const
◦ stretching factor: ξ2 ≈ 1− 〈(∇h)2〉/2
◦ instability of 2D membrane at finite temperature:

ξ2 = 1− T
∫ d2q

(2π)2
q2

2κq4 = 1− T
4πκ ln L

a

[Peierls (1934), Landau (1937)]
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Introduction: membrane theory

◦ imaginary time Lagrangian (α, β = x, y):

L[r ] = ρ(∂τ r )2 + κ
2 (4r )2 + µ

4

(
∂α r∂βr − δαβ

)2
+ λ

8

(
∂α r∂α r − 2

)2

◦ interaction of phonons is important for q < q∗

〈r 2〉 ∼
∫

q>q∗

d 2q
(2π)2

T
κq4 ∼

T
κq2
∗
∼ κ

Y ∼ t2

◦ renormalized bending rigidity

κ(q) = κ
(
q∗/q

)η, q � q∗ = √gqT =
√
µT /κ

for graphene: q−1
∗ ≈ 1 Å (for 1 mm thick paper sheet q−1

∗ ≈ 106 m)

◦ numerics: η = 0.6÷ 0.8

◦ for a review, see
[Nelson, Piran, Weinberg, Statistical mechanics of membranes and surfaces (2004)]
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Introduction: crumpling transition

◦ stretching factor

ξ2 = 1− T
∫ d 2q

(2π)2
q2

2κ(q)q4 = 1− T
4πηκ

◦ flat phase (ξ2 > 0 at T < Tcr = 4πηκ

◦ crumpled phase (ξ2 = 0) at T > Tcr

[Paczuski, Kardar, Nelson (1988); David, Guitter (1988)]
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Introduction: thermal expansion

◦ equation of state:

ξ2 = 1− T
4πηκ

◦ negative thermal expansion coefficient:

αT = ∂ξ2

∂T = − 1
4πηκ

◦ constant αT down to zero T contradicts to the 3d law of
thermodynamics since:

αT = −
(
∂s
∂σ

)

T

where s is entropy per unit area

negative thermal expansion coefficient is due to the crumpling transition
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Introduction: negative thermal expansion coefficient in graphene

[adopted from Bao et al. (2009); Singh et al. (2010)]
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Introduction: the effect of finite tension σ

◦ spectrum of in-plane phonons:

ω(t )
q = q

√
(µ + σ )/ρ, ω(l)

q = q
√

(2µ + λ+ σ )/ρ

◦ spectrum of flexural phonons:

ωq =
√

(σq2 + κq4)/ρ ≈
{

q
√
σ/ρ, q � qσ ,

q2√κ/ρ, q � qσ .

strong modification of flexural phonon spectrum at q � qσ =
√
σ/κ

◦ anomalous Hooke’s law

Bε = σ + σ∗
α

(
σ
σ∗

)α
, α = η

2− η

where ε = ξ2 − 1 + T /Tcr, B = µ + λ, σ∗ ∝ µT /κ (qσ = q∗).
[Guitter, David, Leibler, Peliti (1988,1989); Aronovitz, Golubović, Lubensky (1989)]
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Introduction: anomalous Hooke’s law in graphene

◦ anomalous Hooke’s law

Bε = σ + σ∗
α

(
σ
σ∗

)α
, α = η

2− η

◦ experiment vs theory (α = 0.1); for graphene σ∗ ≈ 0.1 N/m

[Nicholl et al. (2015);Kachorovskii, Gornyi, Mirlin (2017)]

◦ N.B.: the exponent η is affected by disorder, η → η/4.
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Introduction: Poisson’s ratio

◦ definition:
ν = −ε⊥ε||

where ε|| - longitudinal stretching, ε⊥ - transverse deformation

◦ classical value for D-dimensional isotropic solid body

νcl = λ
2µ + (D − 1)λ

◦ thermodynamic stability:

−1 < ν < 1/(D − 1)

◦ for example, ν = 0.33 for aliminum
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Introduction: auxetic materials - 1

◦ polyurethane foam with reentrant structure: ν = −0.7
[Lakes, Science (1987)]

[adopted from Lakes, Annu. Rev. Mater. Res. (2017)]
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Introduction: auxetic materials - 2

◦ positive vs negative Poisson’s ratio:

[adopted from Lakes, Nature (2001)]
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Introduction: self-consistent screening approximation

[Le Doussal, Radzihovsky (1992)]

◦ self-consistent screening approximation (approximate treatment of
phonon’s interaction at q � q∗)

◦ SCSA prediction for the bending rigidity exponent:

ηSCSA = 4
dc +

√
d 2

c − 2dc + 16

where dc = D − 2 is the number of flexural phonon modes.
ηSCSA ≈ 0.8 for dc = 1.

◦ SCSA prediction for the Poisson’s ratio: it is independent of dc at
σ → 0 :

νSCSA = −1
3

No small parameter for SCSA at finite dc !
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Introduction: numerics

◦ exponent of bending rigidity for dc = 1

η = 0.6, 0.7, 0.85

[Gompper, Kroll (1991); Bowick et al. (1996); Los et al. (2009)]

◦ the Poisson’s ratio for dc = 1 at σ → 0:

ν = −0.15, −0.32, −0.37

[Zhang et al. (1996); Falcioni et al. (1997); Bowick et al. (2001)]

◦ strong dependence of ν on the boundary conditions
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Introduction: problems to address

◦ how does to reconcile constant negative thermal expansion
coefficient and the 3d law of thermodynamics?

◦ what is the value of the Poisson’s ratio at σ � σ∗?

◦ is the superuniversal result within SCSA is correct?

◦ how the Poisson’s ratio depends on the boundary conditions (BC)?
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Results: thermal expansion

◦ quantum fluctuations of phonons at qT < q < quv

− dκ
d ln q = 4

7gκ, − dg
d ln q = −g2

[Kats,Lebedev (2014); Burmistrov, Gornyi, Kachorovskii, Katsnelson, Mirlin(2016)]

◦ classical fluctuations of phonons at q < q∗

− dκ
d ln q = ηκ

[David, Guitter (1988); Paczuski, Kardar, Nelson (1988)]
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Results: thermal expansion at σ = 0

◦ high temperature: T � T0 = gκ exp(−2/g)

αT = − 1
8πκ

[
2
η + ln 1

g

]

[Andres, Guinea, Katsnelson (2012)]

◦ graphene: αmax ≈ −0.23 eV−1, T0 ∼ 10−14 K
for comparison: αT ≈ 0.1 eV−1 (iron)

◦ low temperatures T � T0 = gκ exp(−2/g)

αT ' −
1

8πκ
ln ln(Tuv/T )

[(g/2) ln(Tuv/T )]4/7

◦ αT → 0 at T → 0 in accordance with the 3d law of thermodynamics
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Results: thermal expansion at finite σ

◦ high temperatures: T � Tσ ∼ κσ/µ):

αT ≈ −
1

8πκ

[
2
η + ln 1

g − C1

(
Tσ
T

)η/(2−η)
]

◦ intermediate temperatures: gTσ � Tσ : αT ≈ −
1

8πκ ln T
gTσ

◦ low temperatures T � gTσ : αT ≈ −
3ζ(3)ρ
2πσ 2 T 2
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Results: differential and absolute Poisson’s ratios

◦ differential Poisson’s ratio, σx = σ + δσ , σy = σ : νdiff = −δεy/δεx

◦ absolute Poisson’s ratio, σx = σ , σy = 0: ν = −εy/εx

ν = νdiff = νcl = λ
2µ + λ , σ � σ∗

ν 6= νdiff, σL � σ � σ∗

ν = νdiff, σ � σL

σL = σ∗(q∗L)η−2 for q∗L � 1

◦ for graphene σ∗ ≈ 1 N/m and νcl ≈ 0.1
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Results: 2D crystalline membrane in D = dc + 2 dimensional space, dc � 1

◦ the bending rigidity exponent

η = 2
dc

+ 73− 68ζ(3)
27d2

c
+ O

(
1
d3

c

)

◦ universal differential Poisson’s ratio at σL � σ � σ∗ =
√

dcµT /κ

νdiff = −1
3 + 0.016

dc
+ O

(
1
d2

c

)

◦ universal absolute Poisson’s ratio at σL � σ � σ∗

ν = −1 + 2
dc
− 1.57

d2
c

+ O
(

1
d 3

c

)

◦ non-universal Poisson’s ratio at σ � σL:

ν =






−0.135 + O(1/dc ), for periodic BC
−0.075 + O(1/dc ), for free BC
−0.735 + O(1/dc ), for zero BC

N.B. strong thermodynamic fluctuations of tension
√
〈(∆σ )2〉 ∼ σL/

√
dc at σ � σL
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Conclusions:

◦ thermal expansion coefficient is negative upto extremely low T

◦ thermal expansion coefficient is zero at T = 0

◦ distinction between absolute and differential Poisson’s ratios for
σ � σ∗

◦ Poisson ratio is a function of tension σ and system size L; the limits
L → ∞ and σ → 0 do not commute

◦ in the limit L → ∞ differential and absolute Poisson’s ratios acquire
universal values which are depend on dc

◦ in the limit σ � σL Poisson’s ratio depends on boundary conditions
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