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Cavity polaritons are bound exciton-photon states
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Gross-Pitaevskii equation

Nonequilibrium, i. e., dissipative and coherently driven Bose condensates obey
the following equation

i~∂ψ
∂t

= [E(−i~∇)− iγ]ψ + V ψ∗ψψ + f(t)e−iEpt



Collective states of cavity polaritons

1 Bose-Einstein condensates

• phase is free (chosen spontaneously)
→ synchronization, vortices, artificial networks, simulators, . . .

2 Resonantly driven condensates

• phase is fixed with respect to the driving field
→ optical control: parametric scattering, multistability, switches, . . .

3 Pulsed resonant excitation and subsequent free evolution

• ballistic regime
→ injected topological excitations

4 Chimera states

• cavity is homogeneous
• pump is a resonant plane wave at normal incidence
• nevertheless, the condensate wave vector is uncertain . . .
• . . . and the phase is free
→ new types of topological excitations
→ spontaneously formed networks
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Polariton bistability
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Polarization multistability: predictions (1)



Polarization multistability: predictions (2)



Polariton multistability: continuous-wave experiments

• T. K. Paraiso et al.,
Nat. Mater. 9, 655 (2010)

• D. Sarkar, S. Gavrilov et al.,
PRL 105, 216402 (2010)

• C. Adrados et al.,
PRL 105, 216403 (2010)



Multistability in a magnetic field: experiment
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Polariton solitons

Phys. Rev. Lett. 112, 046403 (2014)



Bistability and Bogolyubov excitations

мкм

ψ(t) = ψ̄e−iEpt/~ ⇒ |ψ̄|2 =
f2

(D − V |ψ̄|2)2 + γ2 , whereD = Ep−ELP(k= 0)

Ẽ±(k) = Ep − iγ ±
√(

Ep − ELP(k)− 2V |ψ̄|2
)2 − (V |ψ̄|2)2.



What happens above the scattering threshold?

• Pair scattering (k,k)→ (k′, 2k′ − k) involves accumulation of energy at
constant above-resonance excitation.

• The condensate drifts towards the upper branch of steady-state solutions.

• Near the magic angle, this results in macro-occupation of 0 and 2k.

• At k = 0, the effect is only transient. All solutions are one-mode.



Transitions between steady states: dynamics “with blowup”
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Spinor system
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)
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g

2
ψ− + V ψ∗+ψ+ψ+ + fe−iEpt/~

i~∂ψ−
∂t

=
(
ÊLP − iγ

)
ψ− +

g

2
ψ+ + V ψ∗−ψ−ψ− + fe−iEpt/~

• The equations for ψ+ and ψ− are exactly the same.

• The model is perfectly homogeneous and spin-symmetric.



Spontaneous spin symmetry breakdown (g & γ)

S. S. Gavrilov et al., APL 102, 011104 (2013)

A. V. Sekretenko et al., PRB 88, 205302 (2013)

S. S. Gavrilov et al., PRB 90, 235309 (2014)

Corresponding circular-polarization degree

Full intensity vs. pumping power



Interaction processes and loop instability

1 2 3

1 is the pair interaction. It preserves momentum and spin.
2 is the spin coupling. It does not imply real transitions in a forced (resonantly
driven) system, but . . .
1 + 2 lead to spontaneous breakdown of spin symmetry.
After the symmerty has broken,
3 comes into play and leaves no one-mode solutions at all, given that g > 4γ.



4th order bogolons

They simultaneously:

• allow spins to be
reversed

• and lift the
freqency
denegeracy.



To keep it short and simple

• The interaction is repulsive ⇒ local perturbations tend to spread and
relax.

• However, all plane-wave solutions turn out to be forbidden.

• The condensate wave vector is uncertain.

• This results in lifted phase locking with respect to the driving field.



0-D systems (small micropillars) exhibit “rapid” chaos
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1D systems: strongly ordered spin networks
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The condensate wave vector in uncertain
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Instability of 1D systems: Spontaneously born solitons



Route to turbulence & chimera states (series overs g/γ)
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Chimera states combine synchronized and desynchronized
domains

n



Let us now turn to 2D systems

























2D systems exhibit filaments
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Filaments can evolve chaotically
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Vortices under resonant cw driving
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Steady states at a greater g/γ
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Steady states at a greater g/γ
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• Only two stable solutions: Ω+ and Ω−.

• Under spin-symmetric excitation, each
of them is chosen spontaneously.

• They have the same intensity,

• but opposite phases.

• They annihilate each other on the
boundary, which is thus dilute and
highly unstable.

• The boundary gives birth to dark
solitons and quantized vortices.

• f2
1 =

2γg

V
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g
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)
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Interface between Ω+ and Ω− behaves as a gark soliton in a
1D system



Polarization vortices
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Polarization vortices (magnified)
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Another example












