Дипольные эффекты в ансамбле

холодных атомов

Дипольное взаимодействие

Определение и свойства

- *C_{dd}* разная для разных диполей
- магнитные $\mu_0 \mu^2$
- электрические d^2/ϵ_0

В случае фиксированных диполей:

В общем случае:

Lahaye, Thierry, et al *Reports on Progress in Physics* 72.12 (2009) Gadway, Bryce, and Bo Yan. *Journal of Physics B: Atomic, Molecular and Optical Physics* 49.15 (2016) 3

Определение и свойства

О Анизотропия

ДВ в 2 раза сильнее в случає поляризованных частиц

О Дальнодействие

 $\int_{r_0}^{\infty} U(r) \,\mathrm{d}^D r$

D < n – взаимодействие короткодействующее

(для потенциалов $1/r^n$)

«Магический угол» $\theta_{\rm m} = \arccos\left(1/\sqrt{3}\right) \simeq 54.7^{\circ}$

В 3D – ДДВ дальнодействующее В 2D и 1D – короткодействующазе "Reports on Progress"

Короткодействующее контактное взаимодействие и настройка ДДВ

В ультрахолодном режиме можно заменить реальный межатомный потенциал псевдопотенциалом

$$U_{\text{contact}}(\mathbf{r}) = \frac{4\pi\hbar^2 a}{m}\delta(\mathbf{r}) \equiv g\delta(\mathbf{r}),$$

Для разных атомов величина и знак этого потенциала может регулироваться внешним магнитным полем. Этот эффект называется **резонансом Фешбаха** (эн-я связанного сост. межатомного потенциала = кин. эн-ии сталкивающихся атомов.) Используя вращательно поляризованное поле можно изменять эффективную силу и знак взаимодействия

Некоторые обозначения

Дипольная длина Характеризует силу ДДВ

Table 1. Dipolar constants for various atomic and molecular species. For the molecular species, the (yet unknown) scattering length is assumed to be $100 a_0$ (as the C_6 coefficient of the dimer is comparable to the one of a single atom, the order of magnitude of the scattering length is similar, but obviously the actual value highly depends on the details of the potential).

Species	Dipole moment	$a_{ m dd}$	$\varepsilon_{\rm dd}$
⁸⁷ Rb	$1.0 \mu_{\rm B}$	$0.7 a_0$	0.007
⁵² Cr	$6.0\mu_{\rm B}$	$16a_0$	0.16
KRb	0.6 D	$2.0 \times 10^{3}a_{0}$	20
ND ₃	1.5 D	$3.6 \times 10^{3} a_{0}$	36
HCN	3.0 D	$2.4 \times 10^4 a_0$	240

- для s- рассеяния

 $a_{dd} = \frac{C_{dd}m}{12\pi\hbar^2}$

$$\varepsilon_{\rm dd} \equiv \frac{a_{\rm dd}}{a} = \frac{C_{\rm dd}}{3g}$$

при $\epsilon_{dd} > 1$ ДДВ является доминирующим

Gadway, Bryce, and Bo Yan. *Journal of Physics B: Atomic, Molecular and Optical Physics* 49.15 (2016) Lahaye, Thierry, et al. *Reports on Progress in Physics* 72.12 (2009)

Дипольные эффекты в различных ультрахолодных системах

Деформация ферми-поверхности в дипольном квантовом газе

Система: однокомпонентный квантовый вырожденный дипольный ферми-газ атомов Er

Образец помещен в 3D оптическую гармоническую ловушку и содержит 7 \times 10⁴ атомов при температуре 0.18 T_F , $T_F = 1.12 \mu K$

Aikawa K, Baier S, Frisch A, Mark M, Ravensbergen C and Ferlaino F 2014 Science

Деформация ферми-поверхности в дипольном квантовом газе β – угол между магнитным

Aikawa K, Baier S, Frisch A, Mark M, Ravensbergen C and Ferlaino F 2014 Science

 $\rho(x,y) = \langle \hat{\Psi}^{\dagger}(x)\hat{\Psi}(y)\rangle$ $\int dy \,\rho(x,y)\,\phi_i(y) = \lambda_i\,\phi_i(x)$

 $\hat{\Psi}^{\dagger}(x)$ - оператор рождения частицы в точке x ϕ_i - собственные функции, λ_i - собственные значения N – общее число частиц в системе

ODLRO off-diagonal long range order (ODLRO)

Системы с ODLRO обладают БЭК

O. Penrose and L. Onsager Phys. Rev. 104, 576 (1956)

Возникновение ODLRO подразумевает фазовую когерентность

P.W. Anderson, Rev. Mod. Phys. 38, 298 (1966)

Supersolid – фаза материи, при которой сосуществуют LRO(longrange order) и ODLRO

Colcelli, A., G. Mussardo, and A. Trombettoni *EPL* 122.5 (2018) Boninsegni, M., & Prokof'ev, N. V. Colloquium: Supersolids: What and where are they?. Reviews of Modern Physics, 84(2) (2012).

Ротонные моды в БЭК

• БЭК с ДДВ имеет ротонный минимум

Santos L, Shlyapnikov GV, Lewenstein M Phys Rev Lett. 2003

- Энергетическая щель ротона $\Delta = \epsilon(k_{rot})$ зависит от плотности и силы взаимодействий
- Возбуждения соответствуют периодическим модуляциям плотности при ротонной длине волны

Chomaz, L., Bijnen, R.M.W., Petter, D. *et al.* Observation of roton mode population in a dipolar quantum gas. *Nature Phys*, 442–446 (2018)

Система: дипольные газы Er-166 и Dy-164

Дипольная длина: $a_{dd} = \frac{\mu_0 \mu^2}{12\pi\hbar^2}$ Длина рассеяния контактного взаимодействия: $a_s(Er) =$ $65.5a_0$ $a_s(Dy) = 131a_0$ Число атомов: $N(Er) = 8 \times 10^4$ $N(Dy) = 3.5 \times 10^4$

Оба образца помещены в оптическую дипольную гармоническую ловушку, имеющей форму «сигары», с частотой $\omega_{x,y,z} = 2\pi \times (145, 31.5, 151)$ Hz. для Er $\omega_{x,y,z} = 2\pi \times (300, 16, 222)$ Hz для Dy

> Chomaz, L., et al. "Long-lived and transient supersolid behaviors in dipolar quantum gases." *Physical Review X* 9.2 (2019)

Так как длина волны ротона много меньше расширения БЭК вдоль у, то можно воспользоваться локальной аппроксимацией плотности по оси у.

Chomaz, L., et al. "Long-lived and transient supersolid behaviors in dipolar quantum gases." *Physical Review X* 9.2 (2019)

Chomaz, L., et al. "Long-lived and transient supersolid behaviors in dipolar quantum gases." *Physical Review X* 9.2 (2019)

•14

Плотность немодулирована Модуляция плотности + фазовая когерентность Фазовая когерентность отсутствует

Chomaz, L., et al. "Long-lived and transient supersolid behaviors in dipolar quantum gases." *Physical Review X* 9.2 (2019)

chomaz, L., et al. "Long-lived and transient supersolid behavior in dipolar quantum gases." *Physical Review X* 9.2 (2019)

•16

- В одномерии отсутствуют индивидуальные возбуждения
- Для описания фермионных систем малой размерности теория жидкости Ландау не применима

Система: 1D последовательность пойманных в ловушку ультрахолодных атомов рубидия-87

Figure 1: Sketch of the experimental setup used by Yang et al. Arrays of rubidium-87 atoms, cooled and trapped by laser beams, exhibit Tomonaga-Luttinger liquid (TLL) behavior. (Adapted from B. Yang et al. [2] by APS/Alan Stonebraker)

Giamarchi, T. (2017). Theory for 1D Quantum Materials Tested with Cold Atoms and Superconductors. Physics, 10, 115.